Influence of three-dimensional (3D) fabric orientation on flexural properties of cement-based composites

2017 ◽  
Vol 80 ◽  
pp. 1-9 ◽  
Author(s):  
R. Haik ◽  
E. Adiel Sasi ◽  
A. Peled
2013 ◽  
Vol 25 (13) ◽  
pp. 7221-7224 ◽  
Author(s):  
Binbin Li ◽  
Jianxun Zhu ◽  
Zhaofeng Chen ◽  
Yun Jiang ◽  
Fangtian Hu

Nanoscale ◽  
2017 ◽  
Vol 9 (34) ◽  
pp. 12524-12532 ◽  
Author(s):  
Zhiran Yi ◽  
Yu Lei ◽  
Xianyun Zhang ◽  
Yining Chen ◽  
Jianjun Guo ◽  
...  

The ultralow stiffness of copper microhelices fabricated by a MCED direct-writing method was studied by the electrically induced quasi-static and dynamic electromechanical resonance technique.


2015 ◽  
Vol 22 (5) ◽  
Author(s):  
Bekir Y. Pekmezci

AbstractThis research investigates the application of calender extrusion as a novel technique in the production of cement fiberboards. The technique is successfully used in the production of non-structural building elements. The properties of the produced composites are discussed in this paper, particularly with regards the polyvinyl alcohol (PVA) fiber used in the study. The research involves an experiment to examine the mechanical properties and microstructure of the composites, and the results indicate that calender extrusion is a promising method for the production of thin and wide cement composites. These products can be shaped into various three-dimensional forms in the green state after processing. Based on the results, the mechanical properties of cement-bonded fiberboards vary with processing direction due to the alignment of fibers. Fiber content is the most significant factor with regards the tensile and flexural properties of fiber-reinforced cementitious products processed with calender extrusion. Moreover, processed composites have adequate screw head pull-through and freeze-thaw resistance.


2013 ◽  
Vol 545 ◽  
pp. 69-73
Author(s):  
Faungchat Thammarakcharoen ◽  
Jintamai Suwanprateeb

Recently, porous hydroxyapatite was fabricated by three dimensional printing (3DP) in coupled with low temperature phosphorization to yield nanosized and low crystalline structure. However, brittleness was an intrinsic drawback for some foreseen applications. Polymer infiltration aiming to improve the toughness and mechanical integrity was thus carried out using biodegradable poly(ε-caprolactone) (PCL) as an infiltrant since it has shown good biocompatibility together with a high elongation and energy to failure as compared to other medical polymers. Three routes of infiltration were performed including melt infiltration of low molecular weight PCL (Mw ˜ 10,000), solution infiltration by 10 % high molecular weight PCL (Mw ˜ 80,000) and the combination of both melt and solution infiltration of low and high molecular weight PCL. The combination of low and high MW infiltration yielded the greatest increase in the mechanical properties and followed by the melt infiltration of low molecular weight PCL while the use of high MW infiltration yielded limited enhancement. After immersing in simulated body fluid (SBF), no significant changes in flexural properties were seen for both hydroxyapatite and high molecular weight infiltrated sample. However, flexural strength and strain at break of low molecular weight infiltrated sample largely dropped after 7 days of immersion to be closed to those of hydroxyapatite and high molecular weight infiltrated sample. The flexural properties of high-low infiltrated sample also decreased after immersion, but to a less degree and still maintained the greatest values amongst all samples. This could be associated to the difference in degradation of different molecular weight of PCL and the content of polymer infiltration induced by different infiltration routes. Calcium and phosphorus ions in the SBF were quantified and observed to be consumed continuously during immersion for all samples. Newly formed apatite crystals were observed to form on the surface of the infiltrated composites signifying that infiltration did not hinder the bioactivity of the composites.


2019 ◽  
Vol 35 (12) ◽  
pp. 1471-1482
Author(s):  
Yehia Ibrahim ◽  
Garrett W. Melenka ◽  
Roger Kempers

1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Sign in / Sign up

Export Citation Format

Share Document