Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification

Author(s):  
J.G. Yue ◽  
Y.N. Wang ◽  
D.E. Beskos
2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2016 ◽  
Vol 9 (2) ◽  
pp. 153-191
Author(s):  
W. M. Pereira Junior ◽  
D. L. Araújo ◽  
J. J. C. Pituba

ABSTRACT This work deals with numerical modeling of the mechanical behavior of steel-fiber-reinforced concrete beams using a constitutive model based on damage mechanics. Initially, the formulation of the damage model is presented. The concrete is assumed to be an initial elastic isotropic medium presenting anisotropy, permanent strains, and bimodularity induced by damage evolution. In order to take into account the contribution of the steel fiber to the mechanical behavior of the media, a homogenization procedure is employed. Finally, numerical analyses of steel-fiber-reinforced concrete beams submitted to bending loading are performed in order to show the good performance of the model and its potential.


2021 ◽  
Vol 11 (9) ◽  
pp. 3850
Author(s):  
Anastasios C. Mpalaskas ◽  
Theodore E. Matikas ◽  
Dimitrios G. Aggelis ◽  
Ninel Alver

Steel fiber reinforcement in concrete strongly enhances its ductility and toughness. This is basically due to the additional fracture mechanisms and energy used to overcome the interlocking and adhesion between the fibers and the cementitious matrix. The enhancement of the final properties is measured by mechanical tests and can be assessed only at the end of loading. These processes can be targeted and monitored by acoustic emission (AE) indices offering real-time characterization of the material’s performance much earlier than the final failure or the termination of loading. In this study, steel fiber reinforced concrete (SFRC) beams were tested in bending with simultaneous AE monitoring. Tests conducted independently in different laboratories confirm that the AE behavior at low load levels is very indicative of the amount of reinforcement and consequently, of the final mechanical properties. The reason is that the reinforcement phase is activated through shear stresses in its interphase, a mechanism that is more profound in the presence of higher fiber content, and correspondingly is absent in plain unreinforced material. This finding opens the way to characterize the effectiveness of reinforcement with just a proof loading at less than 30% of the final load bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document