Enhancement and underlying mechanisms of stainless steel wires to fatigue properties of concrete under flexure

Author(s):  
Sufen Dong ◽  
Xinyue Wang ◽  
Ashraf Ashour ◽  
Baoguo Han ◽  
Jinping Ou
Alloy Digest ◽  
2012 ◽  
Vol 61 (4) ◽  

Abstract Stoody AP stainless steel wires are all-position wires. The nickel in this product will achieve a good balance of austenite and ferrite in lean duplex stainless steels. This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on forming and joining. Filing Code: SS-1118. Producer or source: Stoody Company.


2011 ◽  
Vol 138-139 ◽  
pp. 832-835
Author(s):  
Yong Jie Liu ◽  
Qing Yuan Wang ◽  
Ren Hui Tian ◽  
Xiao Zhao

In this paper, tensile fatigue properties of 316L stainless steel thin sheets with a thickness of 0.1 mm are studied. The tests are implemented by using micro mechanical fatigue testing sysytem (MMT-250N) at room temperature under tension-tension cyclic loading. The S-N curve of the thin sheets descends continuously at low cycle region. Cyclic σ-N curve and ε-N curve are obtained according to the classical macroscopical fatigue theory. The results agree well with the experimental fatigue data, showing that the traditional fatigue research methods are also suitable for description of MEMS fatigue in a certain extent. The effect factor of frequency was considered in this study and the results show that the fatiuge life and the fatigue strength are increased as loading frequency increasing.


2013 ◽  
Vol 746 ◽  
pp. 394-399
Author(s):  
Niwat Anuwongnukroh ◽  
Yosdhorn Chuankrerkkul ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Theeralaksna Suddhasthira

The archwire is generally used in fixed appliances for orthodontic treatment to correct dental malocclusion. However, it is interesting to know whether general purpose stainless steel wire could replace commercial orthodontic archwire in orthodontic practice for economic reasons. The purpose of this study was to determine the bending properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires after forming as an archwire for orthodontic use. The samples used in this study were 90 general purpose and 45 commercial (Highland) round stainless steel wires in 0.016, 0.018, and 0.020 sizes (30 general purpose and 15 commercial wires for each size). All 15 general purpose stainless steel wires with different sizes were formed into orthodontic archwire with a Universal Testing Machine. All samples were tested (three-point bending test) for mechanical properties. The results showed no significant difference between general purpose and commercial orthodontic wires in size 0.016 for 0.1 mm offset bending force, 0.2% yield strength, and springback. Although many mechanical properties of general purpose wires differed from commercial wires, their values conformed to other previous studies within the range of clinical acceptance. In conclusion, orthodontic formed general purpose round stainless steel wires had statistically different (p <0.05) mechanical properties from commercial orthodontic stainless steel wires (Highland) but the mechanical properties were acceptable to use in orthodontic treatment.


2010 ◽  
Vol 2 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Kasper Lambrighs ◽  
Ignaas Verpoest ◽  
Bert Verlinden ◽  
Martine Wevers

1981 ◽  
Vol 60 (2) ◽  
pp. 139-145 ◽  
Author(s):  
D.K. Yoshikawa ◽  
C.J. Burstone ◽  
A.J. Goldberg ◽  
J. Morton
Keyword(s):  

2014 ◽  
Vol 45 (8) ◽  
pp. 3446-3453 ◽  
Author(s):  
Xiuyun Zhao ◽  
Yong Liu ◽  
Yan Wang ◽  
Ping Feng ◽  
Huiping Tang

Sign in / Sign up

Export Citation Format

Share Document