natural carbonation
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 13 (22) ◽  
pp. 12833
Author(s):  
Ruoying Li ◽  
Hailong Ye

Vulnerability to atmospheric carbonation is one of the major durability concerns for limestone calcined clay cement (LC3) concrete due to its relatively low overall alkalinity. In this study, the natural carbonation behaviors of ternary ordinary Portland cement-metakaolin-limestone (OPC-MK-LS) blends containing various sulfate salts (i.e., anhydrous CaSO4, Na2SO4, and K2SO4) are studied, with the aim of revealing the influence of alkali cations (Na+, K+). Detailed analyses on the hydrated phase assemblage, composition, microstructure, and pore structure of LC3 pastes prior to and post indoor carbonation are conducted. The results show that the incorporation of sulfate salts accelerates the setting and strength gain of LC3 pastes, likely through enhancement of ettringite formation, but undermines its later age strength achievement due to the deleterious effect of alkali cations (Na+, K+) on late age OPC hydration. The carbonation resistance of LC3 systems is considerably undermined, particularly with the incorporation of Na2SO4 or K2SO4 salts, due to the simultaneous pore coarsening effect and reduced CO2-binding capacity. The carbonation-induced phase and microstructural alterations of LC3 pastes are discussed and compared with those of reference OPC pastes.


Detritus ◽  
2021 ◽  
pp. 5-15
Author(s):  
Pierre Hennebert

European "Technical Recommendations" have proposed, in addition to the use of substance concentrations, the use of a pH (≤ 2 or ≥ 11.5) and an acid / base buffering capacity to classify waste into according to their hazardous properties HP 4 'Irritant' and HP 8 'Corrosive'. Buffer capacity refers to a 2018 UK classification guide referring to the 'corrosive' level of a method proposed in 1988 for substances and preparations but not retained in EU regulations. The different methods of classifying products and wastes in terms of corrosivity or irritation are compared. The waste method using pH and buffering capacity is expressed as an acid / base concentration and compared to the product method (CLP). The “corrosive” level of 1988 corresponds to an average acid / base concentration ≥ 14.4Ͽie 14 times less severe than CLP (acid / base concentration ≥ 1Ͽ These methods were applied to five alkaline wastes (pH ≥ 11.5). Minimum pH waste is not classified by both methods, and three higher pH wastes are classified by both methods. Intermediate waste is classified by CLP but not by the proposed waste method. In order not to innovate and create a new divergence between products and waste, it seems preferable to use the product regulations for HP 4 and HP 8. Fortunately, the elimination of the danger HP 4 and HP 8 from acidic or alkaline waste can be obtained by neutralization (possibly by other wastes), including for alkaline wastes by (natural) carbonation by atmospheric CO2.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3239
Author(s):  
Rosa Abnelia Rivera ◽  
Miguel Ángel Sanjuán ◽  
Domingo Alfonso Martín ◽  
Jorge Luis Costafreda

Ternary Portland cements are new cementitious materials that contain different amounts of cement replacements. Ternary Portland cements composed of granulated blast-furnace slag (GBFS), coal fly ash (CFA), and clinker (K) can afford some environmental advantages by lowering the Portland cement clinker use. Accordingly, this is an opportunity to reduce carbon dioxide emissions and achieve net-zero carbon emissions by 2050. Furthermore, GBFS and CFA possess pozzolanic properties and enhance the mechanical strength and durability at later ages. Compressive strength and natural carbonation tests were performed in mortar and concrete. Cement-based materials made with GBFS and/or CFA presented a delay in the compressive strength development. In addition, they exhibited lower carbonation resistance than that of mortar and concrete made with plain Portland cements. Concrete reinforcement remains passive in common conditions; however, it could be corroded if the concrete pore solution pH drops due to the carbonation process. Service life estimation was performed for the ternary cements regarding the carbonation process. This information can be useful to material and civil engineers in designing concretes made with these ternary cements.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun Zhao ◽  
Eskinder Desta Shumuye ◽  
Zike Wang ◽  
Gashaw Assefa Bezabih

One of the primary problems related to reinforced concrete structures is carbonation of concrete. In many cases, depth of carbonation on reinforced concrete structures is used to evaluate concrete service life. Factors that can substantially affect carbonation resistance of concrete are temperature, relative humidity, cement composition, concentration of external aggressive agents, quality of concrete, and depth of concrete cover. This paper investigates the effect of varying the proportions of blended Portland cement (ordinary Portland cement (OPC) and ground granulated blast-furnace slag (GGBS)) on mechanical and microstructural properties of concrete exposed to two different CO2 exposure conditions. Concrete cubes cast with OPC, and various percentages of GGBS (0%, 30%, 50%, and 70%) were subjected to natural (indoor) and accelerated carbonation exposure. The aim of this paper is to present the research findings and authenticate the literature results of carbonation by using GGBS cement in partial replacement of OPC. The concretes with OPC are compared to concretes with various percentages of GGBS, to assess the carbonation depth as well as rate of carbonation of GGBS-based concretes, under both accelerated carbonation and natural carbonation exposure conditions. Even though GGBS cement increases the carbonation depth, the results are not the same with different GGBS replacement percentages. A correlation is made between concrete samples exposed to 15 ± 2% carbon dioxide (CO2) concentration and those exposed to natural CO2 concentration. The results reveal that the products formed by carbonation are similar under both exposure conditions. The experimental tests also revealed that GGBS cement concrete has a lower carbonation resistance than OPC concrete, due to the consumption of portlandite by the pozzolanic reaction. The combination of 70% OPC and 30% GGBS behaved well enough with respect to accelerated carbonation exposure, the depth of carbonation being roughly equivalent to that of control group (100% OPC). The results also show that rate of carbonation becomes more sensitive as the percentage of GGBS replacement increases (binder ratio), rather than duration of curing. Concretes exposed to natural carbonation (indoor) achieved lower carbonation rates than those exposed to accelerated carbonation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2781
Author(s):  
Philip Van den Heede ◽  
Nele De Belie

Carbonation of cementitious binders implies gradual capture of CO2 and significant compensation for the abundant cement-related CO2 emissions. Therefore, one should always look at the CO2-sequestration-to-emission ratio (CO2SP/EM). Here, this was done for High-Volume Fly Ash (HVFA) mortar (versus two commercial cement mortars). Regarding their CO2 sequestration potential, effects of accelerated testing (at 1–10% CO2) on as such estimated natural carbonation degrees and rates were studied. Production related CO2 emissions were evaluated using life cycle assessment with no/economic allocation for fly ash. Natural carbonation rates estimated from accelerated tests significantly underestimate actual natural carbonation rates (with 29–59% for HVFA mortar) while corresponding carbonation degrees are significantly overestimated (67–74% as opposed to the actual 58% for HVFA mortar). It is advised to stick with the more time-consuming natural tests. Even then, CO2SP/EM values can vary considerably depending on whether economic allocation coefficients (Ce) were considered. This approach imposes significant portions of the CO2 emissions of coal-fired electricity production onto fly ash originating from Germany, China, UK, US and Canada. Ce values of ≥0.50% lower the potential CO2SP/EM values up to a point that it seems no longer environmentally worthwhile to aim at high-volume replacement of Portland cement/clinker by fly ash.


2021 ◽  
Vol 115 ◽  
pp. 103858
Author(s):  
Oswaldo Cascudo ◽  
Plínio Pires ◽  
Helena Carasek ◽  
Alexandre de Castro ◽  
Anne Lopes

2020 ◽  
Author(s):  
Yıldırım İsmail Tosun

There have been very few transport studies of caustic alkali slurry (metal fines-caustic alkali salt mixture). Bath serpentinite particle size changed the heat conductivity to salt bath. A major reason is that the retention time in fixed film processes is longer than in solid–gas processes. This allows more time to the heat absorption for cracking to the desorbed persistent compounds. Furthermore, heavy serpantinite allows an sufficient intimate contact between coal and biomass surface pores and gas atmosphere in the furnace due to more pyrolysis gas desorption. For seeing the sustainability sequestration and environmental concerns in feasibility sight, the microwave heating technologies encompassing natural carbonation, precipitates for soil remediation and toxic gas sorption was offered to be adopted in Şırnak Asphaltite/Batman Oil Fields cases. In many places, amine sequestration techniques can work synergistically for better results. This study determines to a great extent both the high rate and degree of carbonation under pressurized sludge at 5–10 bar so it was found that, a porous sludge bath over 45% sludge was more efficiently conducted even at a low amount serpantinite slime weight rate, below weight rate of 15%.


Sign in / Sign up

Export Citation Format

Share Document