A high-efficiency self-healing cementitious material based on supramolecular hydrogels impregnated with phosphate and ammonium

2021 ◽  
Vol 144 ◽  
pp. 106427
Author(s):  
Xiang Liu ◽  
Qiu Li ◽  
Bo Li ◽  
Wei Chen
2020 ◽  
Vol 113 ◽  
pp. 103718 ◽  
Author(s):  
Mingyue Wu ◽  
Xiangming Hu ◽  
Qian Zhang ◽  
Weimin Cheng ◽  
Di Xue ◽  
...  

2020 ◽  
Vol 155 ◽  
pp. 112105 ◽  
Author(s):  
Zhen Liang ◽  
Jieyu Zhang ◽  
Can Wu ◽  
Xuefeng Hu ◽  
Yuhui Lu ◽  
...  

2016 ◽  
Vol 106 ◽  
pp. 608-617 ◽  
Author(s):  
Biqin Dong ◽  
Guohao Fang ◽  
Weijian Ding ◽  
Yuqing Liu ◽  
Jianchao Zhang ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 32-38 ◽  
Author(s):  
Didier Snoeck

Superabsorbent polymers (SAPs) are promising admixtures to improve properties in cementitious materials. Not only useful to mitigate autogenous shrinkage and to increase the freeze-thaw resistance, SAP particles may enhance self-sealing and self-healing in cementitious materials. The self-sealing leads to a regain in water tightness and promoted autogenous healing may prove to be useful to limit repair works caused by concrete cracking. By providing sufficient building blocks for healing, limiting the crack width by means of synthetic microfibers and inducing water by means of SAPs, a smart cementitious material is obtained. This material can be an excellent material to use in future building applications such as tunnel works and ground-retaining structures. This paper gives an overview of the current status of the research on SAPs in cementitious materials to obtain sealing and healing.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1544
Author(s):  
Lixia Li ◽  
Tianle Liu ◽  
Guosheng Jiang ◽  
Changliang Fang ◽  
Jiaxin Sun ◽  
...  

Due to the inappropriate treatment of dairy wastewater, which can easily cause underground water pollution, there is an increasing need for a novel approach to reuse dairy wastewater. The technology of microbially induced calcium carbonate precipitation with environmentally friendly characteristics and high efficiency has been widely used for underground infrastructure remediation. However, there is a lack of in-depth research on the application of this technology under extreme underground environments, such as the borehole of oil wells with high temperature, high pressure, alkaline, and aerobic conditions. In addition, to reduce the cost of this technology when applied on a large scale, we adopted dairy wastewater to cultivate bacteria. Then, we put the bacterial solution into cement slurry in the borehole to improve the cementing quality. In this paper, the rheology properties, mechanical strength, permeability, porosity, and pore distribution of microbial cementing slurry were studied. Moreover, we applied this microbial cement slurry in the Chunguang 17-14 well of China, and the sealing channeling ability of cement sheath on site was evaluated. The results showed that dairy wastewater could serve as an alternative medium to provide nutrients and energy for the growth of bacteria with low cost. Additionally, the microbial cement slurry exhibited a good right-angle thickening performance and high mechanical strength. The field application displayed an anti-gas channeling ability after microbial remediation. The application of dairy wastewater incubated bacteria to cement slurry not only provides an alternative method for the reuse of dairy wastewater but is also conducive to prolonging the lifespan of oil wells.


2018 ◽  
Vol 250 ◽  
pp. 03005 ◽  
Author(s):  
Hassan Amer Ali Algaifi ◽  
Suhaimi Abu Bakar ◽  
Abdul Rahman Mohd Sam ◽  
Ahmad Razin Zainal Abidin

One of the most commonly used materials in the field of construction is concrete. Nevertheless, there are strong inclinations for concrete to form cracks, which would then allow the penetration of both aggressive and harmful substances into the concrete. Subsequently, this will decrease the durability of the affected structures. Thus, the ability for cracks to heal themselves in the affected cementitious materials is in demand to prolong the life of any structure. Autogenous self-healing is one approach to overcome smaller crack widths (macrocracks). Nowadays, crack width-healing is of great importance. Having said that, both polymers and bacteria are the most common approach to enhance autogenous self-healing and bond crack faces. Crack width-healing of up to 0.97 mm was achieved via bacteria-based self-healing. In this paper, the mechanisms of these approaches and their efficiency to heal crack were highlighted. Both bacteria-and polymers-based self-healing are promising techniques for the future. However, long term studies are still required before real applications can be made.


2019 ◽  
Vol 43 (20) ◽  
pp. 7701-7707 ◽  
Author(s):  
Shujing Ren ◽  
Panpan Sun ◽  
Aoli Wu ◽  
Na Sun ◽  
Lixin Sun ◽  
...  

Organogels can repair the damage rapidly, and the relative xerogels can adsorb methylene blue with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document