Determination of lithium ion diffusion behaviors in tavorite LiVPO4F by galvanostatic intermittent titration technique

2014 ◽  
Vol 40 (9) ◽  
pp. 15113-15119 ◽  
Author(s):  
Rui Ma ◽  
Jie Shu ◽  
Lianyi Shao ◽  
Xiaoting Lin ◽  
Kaiqiang Wu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4683 ◽  
Author(s):  
Jong Hyun Park ◽  
Hana Yoon ◽  
Younghyun Cho ◽  
Chung-Yul Yoo

Graphite is used as a state-of-the-art anode in commercial lithium-ion batteries (LIBs) due to its highly reversible lithium-ion storage capability and low electrode potential. However, graphite anodes exhibit sluggish diffusion kinetics for lithium-ion intercalation/deintercalation, thus limiting the rate capability of commercial LIBs. In order to determine the lithium-ion diffusion coefficient of commercial graphite anodes, we employed a galvanostatic intermittent titration technique (GITT) to quantify the quasi-equilibrium open circuit potential and diffusion coefficient as a function of lithium-ion concentration and potential for a commercial graphite electrode. Three plateaus are observed in the quasi-equilibrium open circuit potential curves, which are indicative of a mixed phase upon lithium-ion intercalation/deintercalation. The obtained diffusion coefficients tend to increase with increasing lithium concentration and exhibit an insignificant difference between charge and discharge conditions. This study reveals that the diffusion coefficient of graphite obtained with the GITT (1 × 10−11 cm2/s to 4 × 10−10 cm2/s) is in reasonable agreement with literature values obtained from electrochemical impedance spectroscopy. The GITT is comparatively simple and direct and therefore enables systematic measurements of ion intercalation/deintercalation diffusion coefficients for secondary ion battery materials.


1997 ◽  
Vol 496 ◽  
Author(s):  
M. Inaba ◽  
S. Nohmi ◽  
A. Funabiki ◽  
T. Abe ◽  
Z. Ogumi

ABSTRACTThe electrochemical permeation method was applied to the determination of the diffusion coefficient of Li+ion (DLi+) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li+ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li+ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gaveDLi+ values on the order of 10−8cm2s−1. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li+ions, the former of which is the origin of the irreversible capacity of GC.


1999 ◽  
Vol 146 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Ping Yu ◽  
B. N. Popov ◽  
J. A. Ritter ◽  
R. E. White

2001 ◽  
Vol 17 (05) ◽  
pp. 385-388 ◽  
Author(s):  
Tang Zhi-Yuan ◽  
◽  
Xue Jian-Jun ◽  
Liu Chun-Yan ◽  
Zhuang Xin-Guo

1999 ◽  
Vol 575 ◽  
Author(s):  
Christian S. Bahn ◽  
Jeanne M. McGraw ◽  
John D. Perkins ◽  
Phillip A. Parilla ◽  
David S. Ginley

ABSTRACTHighly crystalline, textured thin films of LiCoxAl1-xO2 (x=0, 0.5) have been grown by pulsed laser deposition. Films of both stoichiometries were dense and uniaxially textured with Li, Co (or Co, A1) layers parallel to the substrate. It was found that crystal quality depended strongly on oxygen partial pressure, substrate temperature, and substrate material. The deposition of LiCo0.5Al0.5O2 is also highly dependent upon laser fluence, requiring at least 12.8 J/cm2 for high quality films. Chemical diffusion measurements were performed over a wide range of lithium contents using the potentiostatic intermittent titration technique. Maximum and minimum effective for LiCoO2 were 4.0 × 10−11 and 1.2 × 10−2 cm2/s, respectively, and for LiCo0.5A10.5O2, 2.2 × 10−12 and 8.0 × 10−17 cm2/s, respectively.


Sign in / Sign up

Export Citation Format

Share Document