Carbide-bonded graphene coated zirconia for achieving rapid thermal cycling under low input voltage and power

2019 ◽  
Vol 45 (18) ◽  
pp. 24318-24323
Author(s):  
Min Wu ◽  
Lin Zhang ◽  
Eusebio Duarte Cabrera ◽  
Jun-Jie Pan ◽  
Hao Yang ◽  
...  
2021 ◽  
Vol 866 ◽  
pp. 158985
Author(s):  
Xiaojia Su ◽  
Yiwang Bao ◽  
Detian Wan ◽  
Haibin Zhang ◽  
Ludi Xu ◽  
...  

2017 ◽  
Vol 26 (12) ◽  
pp. 1750196 ◽  
Author(s):  
Yanzhao Ma ◽  
Yinghui Zou ◽  
Shengbing Zhang ◽  
Xiaoya Fan

A fully-integrated self-startup circuit with ultra-low voltage for thermal energy harvesting is presented in this paper. The converter is composed of an enhanced swing LC oscillator and a charge pump with decreased equivalent input capacitance. The LC oscillator has ultra-low input voltage and high output voltage swing, and the charge pump has a fast charging speed and small equivalent input capacitance. This circuit is designed with 0.18[Formula: see text][Formula: see text]m standard CMOS process. The simulation results show that the output voltage is in the range of 0.14[Formula: see text]V and 2.97[Formula: see text]V when the input voltage is changed from 50[Formula: see text]mV to 150[Formula: see text]mV. The output voltage could reach 2.87[Formula: see text]V at the input voltage of 150[Formula: see text]mV and the load of 1[Formula: see text]M[Formula: see text]. The maximum efficiency is in the range of 10.0% and 14.8% when the input voltage is changed from 0.2[Formula: see text]V to 0.4[Formula: see text]V. The circuit is suitable for thermoelectric energy harvesting to start with ultra-low input voltage.


Most of the devices in power system become faulty due to the large content of harmonics present in voltage and current. It is mainly caused by the conduction losses in the system. At first, it is necessary to determine the extent of harmonic present by calculating the total harmonic distortions i.e., root over sum of the integral harmonics divide by fundamental harmonic. Later, identification of type of method for reducing harmonics is essential. In this project we are mainly focusing on two types of PFC bridge boost rectifier to improve the efficiency for low and high input voltage range. It using back to back bridgeless PFC boost rectifier for high input voltage and for low input voltage range, three level bridgeless boost rectifiers respectively. Fast recovery diode instead of normal diodes for better reliability and efficiency is utilized. The end model is obtained by combining two circuits BTBBL (Back to back bridgeless boost PFC) and TLBL (Three level bridgeless boost PFC) to get the FMBL (Flexible mode bridgeless boost PFC). Due to presence of less no of components, conduction losses are less hence less distortion is observed with improved efficiency. A simulation is carried out for all three models using MATLAB Simulink platform. In hardware, TLP250 driver for MOSFET is used and which is interfaced with PIC microcontroller. The hardware results are obtained that validates the simulation results.


Author(s):  
Getzial Anbu Mani ◽  
A. K. Parvathy

<p>Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.</p>


2016 ◽  
Vol 25 (2) ◽  
pp. 321-331 ◽  
Author(s):  
G. Nagy ◽  
D. Arbet ◽  
V. Stopjakova ◽  
M. Kovac
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document