Study on shape deviation and crack of ultra-thin glass molding process for curved surface

Author(s):  
Wei Yang ◽  
Zhen Zhang ◽  
Wuyi Ming ◽  
Ling Yin ◽  
Guojun Zhang
Author(s):  
Zhen Zhang ◽  
Wei Yang ◽  
Wuyi Ming ◽  
Ling Yin ◽  
Dunming Liao ◽  
...  

Author(s):  
Zhen Zhang ◽  
Wei Yang ◽  
Wuyi Ming ◽  
Ling Yin ◽  
Dunming Liao ◽  
...  

2011 ◽  
Vol 18 (1) ◽  
pp. 96-98 ◽  
Author(s):  
Chien-Yao Huang ◽  
Jyh-Rou Sze ◽  
Kuo-Cheng Huang ◽  
Chao-Hui Kuo ◽  
Shih-Feng Tseng ◽  
...  

2012 ◽  
Vol 523-524 ◽  
pp. 1001-1005 ◽  
Author(s):  
Martin Hünten ◽  
Daniel Hollstegge ◽  
Fritz Klocke

Manufacturing of micro optical components is approached with many different technologies. In this paper it is presented how the precision glass molding process is enabled to manufacture micro optical components made out of glass. In comparison to the existing glass molding technology the new approach aims for molding entire glass wafers including multiple micro optical components. It is explained which developments in the filed of simulation, mold manufacturing and molding were accomplished in order to enable the precision glass molding on wafer scale.


2012 ◽  
Vol 486 ◽  
pp. 533-537 ◽  
Author(s):  
Hsi Hsin Chien ◽  
Kung Jeng Ma ◽  
Chien Hung Kuo

Glass molding process provides a great potential for the production of precise glass optical components at low cost. The platinum-iridium (Pt-Ir) alloys are widely used as the protective coatings to extend the service life of the mold in glass molding process. This study concentrated on the microstructure and mechanical properties of sputtered Pt-Ir alloy films. The obvious grain growth was observed in the Pt-Ir alloy films at sputtering temperature of 700. The hardness and elastic modulus of Pt-Ir alloy film decreased with the increase in Pt content.


2011 ◽  
Vol 18 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Du Hwan Cha ◽  
Heung Su Park ◽  
Yeon Hwang ◽  
Jeong-Ho Kim ◽  
Hye-Jeong Kim

2010 ◽  
Vol 297-301 ◽  
pp. 808-813 ◽  
Author(s):  
Choung Lii Chao ◽  
Cheng Bang Huo ◽  
Wen Chen Chou ◽  
Tzung Shian Wu ◽  
Kung Jeng Ma ◽  
...  

The glass molding process (GMP) is regarded as a very promising technique for mass producing high precision optical components such as spherical/ aspheric glass lenses and free-form optics. However, only a handful of materials can sustain the chemical reaction, mechanical stress and temperature involved in the glass molding process. Besides, almost all of these mold materials are classified as hard-to-machine materials. This makes the machining of these materials to sub-micrometer form accuracy and nanometer surface finish a rather tough and expensive task. As a result, making mold life longer has become extremely critical in the GMP industry. The interfacial chemical reaction between optical glass and mold is normally the main reason for pre-matured mold failure. This research aimed to investigate the interfacial chemical reaction between various optical glasses, different anti-stick coating designs and several mold materials. The results showed that glass composition, coating design (composition, microstructure, thickness), environment (vacuum, air or in protective gas), reaction temperature and time could all have profound effects on the interfacial chemical reaction. Based on the results, a design developed specially for certain glasses is more likely to be the viable way of optimizing the effect of the protective coating.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Wuyi Ming ◽  
Haojie Jia ◽  
Heyuan Huang ◽  
Guojun Zhang ◽  
Kun Liu ◽  
...  

Curved glass is widely used in 3C industry, and the market demand is increasing gradually. Glass molding process (GMP) is a high-precision, high-efficiency 3D glass touch panel processing technology. In this study, the processing parameters of fingerprint lock glass panels were deeply analyzed. This paper first introduces the molding process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Firstly, it introduces the forming process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Secondly, the simulation model of a fingerprint lock glass plate was simulated by MSC. Marc software. The stress relaxation model and structure relaxation model are used in the model, and the heat transfer characteristics of glass mold are combined to accurately predict the forming process of glass components. The effects of molding temperature, heating rate, holding time, molding pressure, cooling rate and other process parameters on product quality characteristics (residual stress and shape deviation) were analyzed through simulation experiments. The results show that, in a certain range, the residual stress is inversely proportional to the bending temperature and heating rate, and is directly proportional to the cooling rate, while the shape deviation decreases with the increase of temperature and heating rate. When the cooling rate decreases, the shape deviation first decreases and then increases. Furthermore, a verification experiment is designed to verify the reliability of the simulation results by measuring and calculating the surface roughness of the formed products.


Sign in / Sign up

Export Citation Format

Share Document