Detailed numerical simulations of catalytic fixed-bed reactors: Heterogeneous dry reforming of methane

2015 ◽  
Vol 122 ◽  
pp. 197-209 ◽  
Author(s):  
Gregor D. Wehinger ◽  
Thomas Eppinger ◽  
Matthias Kraume
2015 ◽  
Vol 87 (6) ◽  
pp. 734-745 ◽  
Author(s):  
Gregor D. Wehinger ◽  
Thomas Eppinger ◽  
Matthias Kraume

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2021 ◽  
Vol 1016 ◽  
pp. 1585-1590
Author(s):  
Ye Wang ◽  
Yan Nan Wang ◽  
Patrick da Costa ◽  
Chang Wei Hu

In producing syngas, which offers environmental benefits, dry reforming of methane (DRM) could promote the installation of the future carbon tax. This reaction has been already extensively studied and nowadays, no stable catalysts are enough efficient to scale up the process to its industrialization. It has been suggested that basic sites can affect the performance of catalyst. It is known that magnesium promotes the performance of catalyst. In order to understand the effect of Mg for dry reforming of methane, NiO-MgO-ZrO2 catalysts were studied. The activity was carried out at 700 °C in a fixed-bed micro-reactor under CH4:CO2:Ar=1:1:8. It was shown that the introduction of Mg led to an unexpected decrease in the activity when compared to non-promoted catalyst. It was also shown that the surface area, pore-volume, pore diameter, and weak basicity decreased when the Mg was introduced into NiO-ZrO2 catalyst. All these properties can cause a decrease in the activity, selectivity, and stability of NiO-MgO-ZrO2 catalyst for DRM.


Author(s):  
Yacine Benguerba ◽  
Mirella Virginie ◽  
Christine Dumas ◽  
Barbara Ernst

Abstract The dry reforming of CH4 was investigated in a catalytic fixed-bed reactor to produce hydrogen at different temperatures over supported bimetallic Ni-Co catalyst. The reactor model for the dry reforming of methane used a set of kinetic models: The Zhang et al model for the dry reforming of methane (DRM); the Richardson-Paripatyadar model for the reverse water gas shift (RWGS); and the Snoeck et al kinetics for the coke-deposition and gasification reactions. The effect of temperatures on the performance of the reactor was studied. The amount of each species consumed or/and produced were calculated and compared with the experimental determined ones. It was showed that the set of kinetic model used in this work gave a good fit and accurately predict the experimental observed profiles from the fixed bed reactor. It was found that reaction-4 and reaction-5 could be neglected which could explain the fact that this catalyst coked rapidly comparatively with other catalyst. The use of large amount of Ni-Co will lead to carbon deposition and so to the catalyst deactivation.


2018 ◽  
Vol 148 (8) ◽  
pp. 2256-2262 ◽  
Author(s):  
Lukas Tillmann ◽  
Jonas Schulwitz ◽  
André van Veen ◽  
Martin Muhler

2003 ◽  
Vol 58 (3-6) ◽  
pp. 903-910 ◽  
Author(s):  
Hannsjörg Freund ◽  
Thomas Zeiser ◽  
Florian Huber ◽  
Elias Klemm ◽  
Gunther Brenner ◽  
...  

1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


Sign in / Sign up

Export Citation Format

Share Document