Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks

2019 ◽  
Vol 199 ◽  
pp. 588-601 ◽  
Author(s):  
Li Liu ◽  
Bofeng Bai
2006 ◽  
Vol 321-323 ◽  
pp. 1225-1228
Author(s):  
Seong Min Kim ◽  
Chul Soo Kim ◽  
Chong Ho Lee ◽  
Myung Ho Kim ◽  
Seung Jae Park

A real-time white ginseng quality evaluation system based on a machine vision technique and artificial neural networks was developed to replace the current manual grading and its efficiency was tested. The system consisted of conveyor, image acquisition system synchronized with a sample-detecting sensor, and image processing and decision-making system. Software running under Windows system was developed. The algorithm included three consecutive stages of (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural networks. Mathematical features such as area ratio, mean and standard deviation of gray level, skewness of gray level histogram, and the number of run segment, were extracted from five equally divided parts of a specimen. An artificial neural network model was used to classify samples into three grading categories. The grading error of the system was about 26%, which is comparable to the 30% in case of manual grading. The grading rate was one sample per a second.


2021 ◽  
Author(s):  
A Sirajudeen ◽  
Anuradha balasubramaniam ◽  
S Karthikeyan

Abstract Cataract is a condition of the opacity in the lenticular regions, which usually results in bad visual interpretation of the viewed object or any entity. Hence the timely detection of cataract is considered to be significant and can even contribute in the prevention from loss of fight that might occur if the cataract is left untreated. In this paper, detection of cataract disease is carried out based on the image processing technique. Color features, texture features and shape features are extracted separately. This study proposed a Novel Angular Binary Pattern (NABP) for the extraction of texture features. And after the extraction of features, the images are subjected to classification through the implementation of the proposed novel Kernel Based Convolutional Neural Networks. Results are obtained separately for all the three types of features. A comparison is carried out for the proposed work with existing works and based on the results obtained it can be seen that the proposed work comes up with the enhanced results than the traditional methods.


1997 ◽  
Vol 52 (21-22) ◽  
pp. 3979-3992 ◽  
Author(s):  
J.-P. Zhang ◽  
J.R. Grace ◽  
N. Epstein ◽  
K.S. Lim

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kwame Sarkodie ◽  
Andrew Fergusson-Rees

Abstract The accurate identification of gas–liquid flow regimes in pipes remains a challenge for the chemical process industries. This paper proposes a method for flow regime identification that combines responses from a nonintrusive optical sensor with linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) for vertical upward gas–liquid flow of air and water. A total of 165 flow conditions make up the dataset, collected from an experimental air–water flow loop with a transparent test section (TS) of 27.3 mm inner diameter and 5 m length. Selected features extracted from the sensor response are categorized into feature group 1, average sensor response and standard deviation, and feature group 2 that also includes percentage counts of the calibrated responses for water and air. The selected features are used to train, cross validate, and test four model cases (LDA1, LDA2, QDA1, and QDA2). The LDA models produce higher average test classification accuracies (both 95%) than the QDA models (80% QDA1 and 45% QDA2) due to misclassification associated with the slug and churn flow regimes. Results suggest that the LDA1 model case is the most stable with the lowest average performance loss and is therefore considered superior for flow regime identification. In future studies, a larger dataset may improve stability and accuracy of the QDA models, and an extension of the conditions and parameters would be a useful test of applicability.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Sign in / Sign up

Export Citation Format

Share Document