Development of an up-scalable rotary kiln design for the pyrolysis of waste tyres

2021 ◽  
Vol 238 ◽  
pp. 116573
Author(s):  
Fabian Proch ◽  
Kai Bauerbach ◽  
Paschalis Grammenoudis
Keyword(s):  
1999 ◽  
Vol 09 (PR3) ◽  
pp. Pr3-307-Pr3-312 ◽  
Author(s):  
B. Pohlmann ◽  
K.-H. Funken ◽  
R. Dominik
Keyword(s):  

2020 ◽  
Vol 50 (5) ◽  
pp. 347-350
Author(s):  
G. M. Druzhinin ◽  
N. B. Loshkarev ◽  
E. D. Solntseva ◽  
I. M. Khammatov

2021 ◽  
pp. 0734242X2110085
Author(s):  
Jabulani I Gumede ◽  
Buyiswa G Hlangothi ◽  
Chris D Woolard ◽  
Shanganyane P Hlangothi

There is a growing need to recover raw materials from waste due to increasing environmental concerns and the widely adopted transition to circular economy. For waste tyres, it is necessary to continuously develop methods and processes that can devulcanize rubber vulcanizates into rubber products with qualities and properties that can closely match those of the virgin rubber. Currently, the most common, due to its efficiency and perceived eco-friendliness in recovering raw rubber from waste rubbers, such as tyres, is devulcanization in supercritical carbon dioxide (scCO2) using commercial and typical devulcanizing agents. The scCO2 has been generally accepted as an attractive alternative to the traditional liquid-based devulcanization media because of the resultant devulcanized rubber has relatively better quality than other processes. For instance, when scCO2 is employed to recover rubber from waste tyres (e.g. truck tyres) and the recovered rubber is blended with virgin natural rubber (NR) in various compositions, the curing and mechanical properties of the blends closely match those of virgin NR. The atmospheric toxicity and cost of the commonly used devulcanization materials like chemical agents, oils and solvents have enabled a shift towards utilization of greener (mainly organic) and readily available devulcanization chemical components. This literature review paper discusses the approaches, which have less negative impact on the environment, in chemical devulcanization of rubber vulcanizates. A special focus has been on thermo-chemical devulcanization of waste tyres in scCO2 using common organic devulcanizing agents.


2021 ◽  
pp. 0734242X2110047
Author(s):  
Junqing Xu ◽  
Jiaxue Yu ◽  
Wenzhi He ◽  
Juwen Huang ◽  
Junshi Xu ◽  
...  

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


Sign in / Sign up

Export Citation Format

Share Document