Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator

2018 ◽  
Vol 117 ◽  
pp. 117-124 ◽  
Author(s):  
Omar Abu Arqub ◽  
Banan Maayah
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Konuralp ◽  
H. Hilmi Sorkun

Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay functionθ(t)vanishes inside the integral limits such thatθ(t)=qtfor0<q<1,t≥0. Either the approximate solutions that are converging to the exact solutions or the exact solutions of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in figures and tables.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mingxu Yi ◽  
Kangwen Sun ◽  
Jun Huang ◽  
Lifeng Wang

A numerical method based on the CAS wavelets is presented for the fractional integrodifferential equations of Bratu type. The CAS wavelets operational matrix of fractional order integration is derived. A truncated CAS wavelets series together with this operational matrix is utilized to reduce the fractional integrodifferential equations to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited2k(2M+1). The convergence and error estimation of CAS wavelets are also given. Two examples are included to demonstrate the validity and applicability of the approach.


Author(s):  
Nur Auni Baharum ◽  
Zanariah Abdul Majid ◽  
Norazak Senu

The performance of the numerical computation based on the diagonally implicit multistep block method for solving Volterra integrodifferential equations (VIDE) of the second kind has been analyzed. The numerical solutions of VIDE will be computed at two points concurrently using the proposed numerical method and executed in the predictor-corrector (PECE) mode. The strategy to obtain the numerical solution of an integral part is discussed and the stability analysis of the diagonally implicit multistep block method was investigated. Numerical results showed the competence of diagonally implicit multistep block method when solving Volterra integrodifferential equations compared to the existing methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Xueqin Lv ◽  
Sixing Shi

The reproducing kernel method (RKM) and the Adomian decomposition method (ADM) are applied to solventh-order nonlinear weakly singular Volterra integrodifferential equations. The numerical solutions of this class of equations have been a difficult topic to analyze. The aim of this paper is to use Taylor’s approximation and then transform the givennth-order nonlinear Volterra integrodifferential equation into an ordinary nonlinear differential equation. Using the RKM and ADM to solve ordinary nonlinear differential equation is an accurate and efficient method. Some examples indicate that this method is an efficient method to solventh-order nonlinear Volterra integro-differential equations.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3845-3853 ◽  
Author(s):  
Banan Maayah ◽  
Feras Yousef ◽  
Omar Arqub ◽  
Shaher Momani ◽  
Ahmed Alsaedi

In this article, we propose and analyze a computational method for the numerical solutions of mixed type singular time-fractional partial integrodifferential equations of Dirichlet functions types. The method provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n-term of exact solutions, numerical solutions of linear and nonlinear singular time-fractional equations of nonhomogeneous function type are studied from mathematical viewpoint. The utilized results show that the present method and simulated annealing provide a good scheduling methodology to such singular integrodifferential equations.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Olumuyiwa A. Agbolade ◽  
Timothy A. Anake

The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.


Author(s):  
D.E. Jesson ◽  
S. J. Pennycook

It is well known that conventional atomic resolution electron microscopy is a coherent imaging process best interpreted in reciprocal space using contrast transfer function theory. This is because the equivalent real space interpretation involving a convolution between the exit face wave function and the instrumental response is difficult to visualize. Furthermore, the crystal wave function is not simply related to the projected crystal potential, except under a very restrictive set of experimental conditions, making image simulation an essential part of image interpretation. In this paper we present a different conceptual approach to the atomic imaging of crystals based on incoherent imaging theory. Using a real-space analysis of electron scattering to a high-angle annular detector, it is shown how the STEM imaging process can be partitioned into components parallel and perpendicular to the relevant low index zone-axis.It has become customary to describe STEM imaging using the analytical treatment developed by Cowley. However, the convenient assumption of a phase object (which neglects the curvature of the Ewald sphere) fails rapidly for large scattering angles, even in very thin crystals. Thus, to avoid unpredictive numerical solutions, it would seem more appropriate to apply pseudo-kinematic theory to the treatment of the weak high angle signal. Diffraction to medium order zero-layer reflections is most important compared with thermal diffuse scattering in very thin crystals (<5nm). The electron wave function ψ(R,z) at a depth z and transverse coordinate R due to a phase aberrated surface probe function P(R-RO) located at RO is then well described by the channeling approximation;


Sign in / Sign up

Export Citation Format

Share Document