Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors

2021 ◽  
Vol 152 ◽  
pp. 111388
Author(s):  
Jinwoo Park ◽  
Tae-Hyeon Kim ◽  
Sungjoon Kim ◽  
Geun Ho Lee ◽  
Hussein Nili ◽  
...  
2020 ◽  
Vol 140 (12) ◽  
pp. 1297-1306
Author(s):  
Shu Takemoto ◽  
Kazuya Shibagaki ◽  
Yusuke Nozaki ◽  
Masaya Yoshikawa

2018 ◽  
Vol 93 (5) ◽  
pp. 603-610 ◽  
Author(s):  
Samia Mathlouthi ◽  
Abderrazek Oueslati ◽  
Bassem Louati

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1401
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.


2021 ◽  
Vol 2 ◽  
pp. 31-40
Author(s):  
Jiang Li ◽  
Yijun Cui ◽  
Chongyan Gu ◽  
Chenghua Wang ◽  
Weiqiang Liu ◽  
...  

2021 ◽  
Vol 32 (18) ◽  
pp. 23232-23245
Author(s):  
Ishpal Rawal ◽  
Vipin Kumar ◽  
Vinod Kumar ◽  
Prikshit Gautam ◽  
Vijay Kumar Sharma
Keyword(s):  

2008 ◽  
Vol 1091 ◽  
Author(s):  
Hung-Keng Chen ◽  
Po-Tsun Liu ◽  
Ting-Chang Chang ◽  
S.-L. Shy

AbstractVariable temperature electrical measurement is well-established and used for determining the conduction mechanism in semiconductors. There is a Meyer¡VNeldel relationship between the activation energy and the prefactor with a Meyer¡VNeldel energy of 30.03 meV, which corresponds well with the isokinetic temperature of about 350 K. Therefore, the multiple trapping and release model is properly used to explain the thermally activated phenomenon. By the method, an exponential distribution of traps is assumed to be a better representation of trap states in band tail. Samples with higher temperature during measurement are observed to show better mobility, higher on-current and lower resistance, which agree well with the multiple trapping and release model proposed to explain the conduction mechanism in pentacene-based OTFTs.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 27696-27707
Author(s):  
Amin A. Zayed ◽  
Hanady Hussein Issa ◽  
Khaled A. Shehata ◽  
Hani Fikry Ragai

Sign in / Sign up

Export Citation Format

Share Document