In-situ Fe isotope ratio determination in Fe–Ti oxides and sulfides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific

2014 ◽  
Vol 363 ◽  
pp. 101-113 ◽  
Author(s):  
Wanja Dziony ◽  
Ingo Horn ◽  
Dominique Lattard ◽  
Jürgen Koepke ◽  
Grit Steinhoefel ◽  
...  
2021 ◽  
Vol 260 ◽  
pp. 106921
Author(s):  
Chiara Balestrieri ◽  
Patrizia Ziveri ◽  
Michaël Grelaud ◽  
P. Graham Mortyn ◽  
Claudia Agnini

2010 ◽  
Vol 23 (14) ◽  
pp. 3855-3873 ◽  
Author(s):  
Alexey V. Fedorov

Abstract Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio ɛk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.


2016 ◽  
Author(s):  
Thomas Röckmann ◽  
Simon Eyer ◽  
Carina van der Veen ◽  
Maria E. Popa ◽  
Béla Tuzson ◽  
...  

Abstract. High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +(0.05 ± 0.03) ‰ for δ13C and –(3.6 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.


Sign in / Sign up

Export Citation Format

Share Document