40Ar/39Ar dating of high temperature geothermal systems: First attempt on hydrothermally altered pyroxenes from the Saintes archipelago (Lesser Antilles arc, Guadeloupe)

2021 ◽  
pp. 120401
Author(s):  
Alexiane Favier ◽  
Chrystele Verati ◽  
Jean-Marc Lardeaux ◽  
Philippe Münch ◽  
Christophe Renac ◽  
...  
2014 ◽  
Vol 73 (3) ◽  
pp. 2127-2147 ◽  
Author(s):  
Marie Chenet ◽  
Delphine Grancher ◽  
Marie Redon

Geology ◽  
2016 ◽  
Vol 44 (12) ◽  
pp. 987-990 ◽  
Author(s):  
Heye Freymuth ◽  
Tim Elliott ◽  
Matthijs van Soest ◽  
Susanne Skora

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000298-000304
Author(s):  
Douglas C. MacGugan ◽  
Eric C. Abbott ◽  
J. Chris Milne

Measurement-While-Drilling (MWD) technology for oil and gas, and geothermal directional drilling exploration is pushing into ever higher temperature environments - beyond 200°C. Orientation sensors supporting these high temperature environments need to provide highly accurate elevation and tool face measurements on the order of 0.1°. Honeywell has developed a new digital high temperature down-hole accelerometer, DHTA230, capable of providing the required accuracy at the elevated temperatures of 230°C, in the rugged MWD shock and vibration environment, with expected excellent reliability and life. The DHTA230 is designed for use in the downhole environment, but is based upon a mature Honeywell accelerometer using dual vibrating beam sensing elements. These sensing elements are configured as double-ended-tuning-forks in a push-pull orientation attached onto a pendulous proof mass. This push-pull configuration provides an acceleration signal proportional to the frequency difference of the vibrating beams, an easily captured digital signal through measurement of the two vibrating beam phases. The digitized accelerometer eliminates the need for A/D electronics in the high temperature drilling environment. The DHTA230 is 0.79” in diameter with a depth of .393” at the mount flange. The ruggedized configuration of the DHTA230 is expected to provide reliable orientation measurement in high temperature direction drilling applications up to 1000h. The DHTA230 electronics incorporate ceramic hybrids with chip and wire construction. Active die are based upon proven 300°C chips developed previously for the Enhanced Geothermal Systems OM300, fabricated using Honeywell HTSOI4 process. The electronics include power conditioning providing reliable operation using a single power supply between 7V and 15V. Dual oscillator electronic circuits provide the necessary function to drive and sense the dual vibrating beams, while providing a CMOS logic level signal of the frequency pulse train. The accelerometer provides precision output up to 15g acceleration inputs, and allows sensing of higher-g vibration levels. This paper contains information on the target application, electrical and mechanical component requirements, design, fabrication approach, and initial prototype testing. The DHTA230 is expected to enter production transition in 2015.


Author(s):  
A Gadalia ◽  
V Bouchot ◽  
P Calcagno ◽  
S Caritg ◽  
G Courrioux ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3171
Author(s):  
Liangliang Guo ◽  
Zihong Wang ◽  
Yanjun Zhang ◽  
Zhichao Wang ◽  
Haiyang Jiang

In order to study the mechanism of hydraulic fracturing in enhanced geothermal systems, we analyzed the influence of high temperatures and embedded fractures on the initiation and propagation of hydraulic fractures using a laboratory test and numerical simulation. The analysis was conducted via large-scale true triaxial hydraulic fracturing tests with acoustic emission monitoring. Moreover, we discussed and established the elastic-plastic criterion of hydraulic fracturing initiation. The corresponding fracturing procedure was designed and embedded into the FLAC3D software. Then, a numerical simulation was conducted and compared with the laboratory test to verify the accuracy of the fracturing procedure. The influence of high temperatures on hydraulic fracturing presented the following features. First, multi-fractures were created, especially in the near-well region. Second, fracturing pressure, extension pressure, and fracture flow resistance became larger than those at room temperature. 3D acoustic fracturing emission results indicated that the influence of the spatial distribution pattern of embedded fractures on hydraulic fracturing direction was larger than that of triaxial stress. Furthermore, the fracturing and extension pressures decreased with the increase of embedded fracture density. For hydraulic fracturing in a high temperature reservoir, a plastic zone was generated near the borehole, and this zone increased as the injection pressure increased until the well wall failed.


Sign in / Sign up

Export Citation Format

Share Document