230°C Accelerometer with Digitized Output for Directional Drilling

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000298-000304
Author(s):  
Douglas C. MacGugan ◽  
Eric C. Abbott ◽  
J. Chris Milne

Measurement-While-Drilling (MWD) technology for oil and gas, and geothermal directional drilling exploration is pushing into ever higher temperature environments - beyond 200°C. Orientation sensors supporting these high temperature environments need to provide highly accurate elevation and tool face measurements on the order of 0.1°. Honeywell has developed a new digital high temperature down-hole accelerometer, DHTA230, capable of providing the required accuracy at the elevated temperatures of 230°C, in the rugged MWD shock and vibration environment, with expected excellent reliability and life. The DHTA230 is designed for use in the downhole environment, but is based upon a mature Honeywell accelerometer using dual vibrating beam sensing elements. These sensing elements are configured as double-ended-tuning-forks in a push-pull orientation attached onto a pendulous proof mass. This push-pull configuration provides an acceleration signal proportional to the frequency difference of the vibrating beams, an easily captured digital signal through measurement of the two vibrating beam phases. The digitized accelerometer eliminates the need for A/D electronics in the high temperature drilling environment. The DHTA230 is 0.79” in diameter with a depth of .393” at the mount flange. The ruggedized configuration of the DHTA230 is expected to provide reliable orientation measurement in high temperature direction drilling applications up to 1000h. The DHTA230 electronics incorporate ceramic hybrids with chip and wire construction. Active die are based upon proven 300°C chips developed previously for the Enhanced Geothermal Systems OM300, fabricated using Honeywell HTSOI4 process. The electronics include power conditioning providing reliable operation using a single power supply between 7V and 15V. Dual oscillator electronic circuits provide the necessary function to drive and sense the dual vibrating beams, while providing a CMOS logic level signal of the frequency pulse train. The accelerometer provides precision output up to 15g acceleration inputs, and allows sensing of higher-g vibration levels. This paper contains information on the target application, electrical and mechanical component requirements, design, fabrication approach, and initial prototype testing. The DHTA230 is expected to enter production transition in 2015.

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000199-000206 ◽  
Author(s):  
Bruce W. Ohme ◽  
Mark R. Larson

The development of Enhanced Geothermal Systems (EGS) for base-load electrical power generation will require electronics for sensing and control during exploration and drilling and also during production. The operating temperature environments for these applications will generally be more extreme than those encountered by electronics currently deployed for oil and gas development and production monitoring. To address this requirement, electronic components have been designed and fabricated for operation at temperatures of 300°C. These integrated circuits use silicon-on-insulator (SOI) fabrication processes to achieve high temperature operation. High-fidelity simulation models have been developed by characterization of SOI devices at 300°C. These device models were employed to design components required for the development of a down-hole orientation module. A wide-bandwidth, low-noise operational amplifier has been developed for use with MEMS accelerometer sensors. A multi-channel synchronous voltage-to-frequency converter with built-in reference and oscillators has also been developed for use with 3-axis flux-gate magnetometers. The components themselves are general purpose and could easily be used for other high-temperature sensor-interface applications. .


2018 ◽  
Vol 48 (1) ◽  
pp. 219-243 ◽  
Author(s):  
Qi Li ◽  
Fang-Zhou Yao ◽  
Yang Liu ◽  
Guangzu Zhang ◽  
Hong Wang ◽  
...  

The demand for high-temperature dielectric materials arises from numerous emerging applications such as electric vehicles, wind generators, solar converters, aerospace power conditioning, and downhole oil and gas explorations, in which the power systems and electronic devices have to operate at elevated temperatures. This article presents an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications. Polymers, polymer nanocomposites, and bulk ceramics and thin films are the focus of the materials reviewed. Both commercial products and the latest research results are covered. While general design considerations are briefly discussed, emphasis is placed on material specifications oriented toward the intended high-temperature applications, such as dielectric properties, temperature stability, energy density, and charge-discharge efficiency. The advantages and shortcomings of the existing dielectric materials are identified. Challenges along with future research opportunities are highlighted at the end of this review.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000039-000044
Author(s):  
Charlie Beebout ◽  
Erick M. Spory

ABSTRACT Many integrated circuits (ICs) will operate well above their maximum rated temperature of +70°C or +125°C, but are often not packaged appropriately to reliably endure temperatures above +150C. Specifically, the original gold or copper bonds on the aluminum die bond pads are prone to Kirkendall or Horsting voiding, particularly at temperatures greater than +150°C. Also the mold compounds used in plastic packaging for IC assembly can degrade at these elevated temperatures. In some cases, commercial demand for higher temperature reliability can justify a separate offering of ICs assembled in hermetic, ceramic packages from the original component manufacturer (OCM). However, in most cases, the market demand is deemed insufficient. Global Circuit Innovations (GCI) has developed a high-yielding process, which can remove a semiconductor die (i.e., computer chip) from a plastic package, remove the original bond wires and/or ball bonds, plate the aluminum die bond pads with Electroless Nickel, Electroless Palladium, and Immersion Gold (ENEPIG), and then reassemble the now improved semiconductor die into a hermetic, ceramic package. Device Extraction, ENEPIG die bond pad plating and Repackaging (DEER) provides an improved die bond pad surface such that works well with either gold or aluminum bond wires in applications up to +250°C without mechanical or electrical connectivity degradation. GCI routinely exposes sample devices to +250°C bakes with 100% post bake yields so as to continuously ensure that any device processed with the DEER technology will reliably perform in high-temperature environments. Although the oil and gas industry has already expressed significant interest in the DEER process, with excellent lifetest and production application results demonstrating dramatically increased component lifetimes at elevated temperatures, this technology can also be leveraged for any application exposing ICs to harsh environments. Not only is the high-temperature reliability dramatically increased, but also the new hermetic, ceramic package protects the IC from a variety of elements and environments (i.e., corrosives and moisture).


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3171
Author(s):  
Liangliang Guo ◽  
Zihong Wang ◽  
Yanjun Zhang ◽  
Zhichao Wang ◽  
Haiyang Jiang

In order to study the mechanism of hydraulic fracturing in enhanced geothermal systems, we analyzed the influence of high temperatures and embedded fractures on the initiation and propagation of hydraulic fractures using a laboratory test and numerical simulation. The analysis was conducted via large-scale true triaxial hydraulic fracturing tests with acoustic emission monitoring. Moreover, we discussed and established the elastic-plastic criterion of hydraulic fracturing initiation. The corresponding fracturing procedure was designed and embedded into the FLAC3D software. Then, a numerical simulation was conducted and compared with the laboratory test to verify the accuracy of the fracturing procedure. The influence of high temperatures on hydraulic fracturing presented the following features. First, multi-fractures were created, especially in the near-well region. Second, fracturing pressure, extension pressure, and fracture flow resistance became larger than those at room temperature. 3D acoustic fracturing emission results indicated that the influence of the spatial distribution pattern of embedded fractures on hydraulic fracturing direction was larger than that of triaxial stress. Furthermore, the fracturing and extension pressures decreased with the increase of embedded fracture density. For hydraulic fracturing in a high temperature reservoir, a plastic zone was generated near the borehole, and this zone increased as the injection pressure increased until the well wall failed.


2021 ◽  
Author(s):  
Ziyang Zhou ◽  
Hitoshi MIKADA ◽  
Junichi TAKEKAWA ◽  
Shibo Xu

Abstract With the increasing attention to clean and economical energy resources, geothermal energy and enhanced geothermal systems (EGS) have gained much importance. For the efficient development of deep geothermal reservoirs, it is crucial to understand the mechanical behavior of reservoir rock and its interaction with injected fluid under high temperature and high confining pressure environments. In the present study, we develop a novel numerical scheme based on the distinct element method (DEM) to simulate the failure behavior of rock by considering the influence of thermal stress cracks and high confining pressure for EGS. We validated the proposing method by comparing our numerical results with experimental laboratory results of uniaxial compression tests under various temperatures and biaxial compression tests under different confining pressure regarding failure patterns and stress-strain curves. We then apply the developed scheme to the hydraulic fracturing simulations under various temperatures, confining pressure, and injection fluid conditions. Our numerical results indicate that the number of hydraulic cracks is proportional to the temperature. At a high temperature and low confining pressure environment, a complex crack network with large crack width can be observed, whereas the generation of the micro cracks is suppressed in high confining pressure conditions. In addition, high-viscosity injection fluid tends to induce more hydraulic fractures. Since the fracture network in the geothermal reservoir is an essential factor for the efficient production of geothermal energy, the combination of the above factors should be considered in hydraulic fracturing treatment in EGS.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenxi Zhu ◽  
Xiuhua Zheng

Abstract Colloidal gas aphrons (CGA) are finding increasing application in depleted oil and gas reservoirs because of their distinctive characteristics. To overcome the limitations of its application in high-temperature drilling, a modified starch foams stabilizer WST with a temperature resistance of 160 °C was synthesized via radical polymerization. The chemical structure of WST was characterized by Fourier infrared spectroscopy and results showed that all three monomers acrylamide, 2-acrylamido-2-methyl-1-propane sulfonic acid, and N-vinylpyrrolidone have been grafted onto starch efficiently. Based on the microscopic observations, highly stable aphrons have been successfully generated in the WST-based CGA drilling fluids within 160 °C, and most aphrons lie in the range of 10–150 μm. WST can provide higher viscosity at high temperatures compared to xanthan gum, which helps to extend foam life and stability by enhancing the film strength and slowing down the gravity drainage. Results show that WST-CGA aged at elevated temperatures (120–160 °C) is a high-performance drilling fluid with excellent shear-thinning behavior, cutting carrying capacity, and filtration control ability. The significant improvement of filtration control and well-building capability at high temperatures is an important advantage of WST-CGA, which can be attributed to the enhancement of mud cake quality by WST.


2021 ◽  
Author(s):  
Eric van Oort ◽  
Dongmei Chen ◽  
Pradeepkumar Ashok ◽  
Amirhossein Fallah

Abstract Deep closed-loop geothermal systems (DCLGS) are introduced as an alternative to traditional enhanced geothermal systems (EGS) for green energy production that is globally scalable and dispatchable. Recent modeling work shows that DCLGS can generate an amount of power that is similar to EGS, while overcoming many of the downsides of EGS (such as induced seismicity, emissions to air, mineral scaling etc.). DCLGS wells can be constructed by leveraging and extending oil and gas extended reach drilling (ERD) and high-pressure high-temperature (HPHT) drilling expertise in particular. The objectives of this paper are two-fold. First, we demonstrate that DCLGS wells can generate power / electricity on a scale that is comparable to EGS, i.e. on the order of 40-55 MW per well. To this extent, we have developed a coupled hydraulic-thermal model, validated using oil and gas well cases, that can simulate various DCLGS well configurations. Secondly, we highlight the technology gaps and needs that still exist for economically drilling DCLGS wells, showing that it is possible to extend oil and gas technology, expertise and experience in ERD and HPHT drilling to construct complex DCLGS wells. Our coupled hydraulic-thermal sensitivity analyses show that there are key well drilling and design parameters that will ultimately affect DCLGS operating efficiency, including strategic deployment of managed pressure drilling / operation (MPD/MPO) technology, the use of vacuum-insulated tubing (VIT), and the selection of the completion in the high-temperature rock zones. Results show that optimum design and execution can boost initial geothermal power generation to 50 MW and beyond. In addition, historical ERD and HPHT well experience is reviewed to establish the current state-of-the-art in complex well construction and highlight what specific technology developments require attention and investment to make DCLGS a reality in the near-future (with a time horizon of ∼10 years). A main conclusion is that DCLGS is a realistic and viable alternative to EGS, with effective mitigation of many of the (potentially show-stopping) downsides of EGS. Oil and gas companies are currently highly interested in green, sustainable energy to meet their environmental goals. DCLGS well construction allows them to actively develop a sustainable energy field in which they already have extensive domain expertise. DCLGS offers oil and gas companies a new direction for profitable business development while meeting environmental goals, and at the same time enables workforce retention, retraining and re-deployment using the highly transferable skills of oil and gas workers.


2013 ◽  
Author(s):  
Norman Turnquist ◽  
Xuele Qi ◽  
Tsarafidy Raminosoa ◽  
Ken Salas ◽  
Omprakash Samudrala ◽  
...  

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000116-000122
Author(s):  
Jennifer Williams ◽  
Johnson Matthey

The need for electronic applications to be able to withstand high temperatures has become more prevalent in recent years. With drilling in the oil and gas industry getting deeper, the operating temperatures are getting higher, with typical geothermal gradients of 25 °C/km. Temperatures up to 250 °C are often seen by drilling operations, which is putting a greater strain on the electronics and associated packaging. Standard methods of cooling are not viable for these harsh environments, so new technology is required to negate the effects of the extreme temperatures. As well as the use of high temperature stable electronic components, High Temperature Getters are required to remove gaseous contaminants from electronic housings to negate the associated deleterious effect on performance. The contaminating species to be removed are commonly H2O, CO2, and H2, and sometimes short chain organic molecules. Conventional getter materials can remove damaging species at temperatures up to about 80 °C. New technology is however required to eliminate these species at temperatures up to 250 °C, where existing getter formulations would certainly fail. Johnson Matthey has developed a range of getters that can remove multiple contaminants at both ambient and elevated temperatures. The first product in the series, HTA 1 can remove water and carbon dioxide. Addition of a metal oxide component in HTA 2 facilitates hydrogen removal at elevated temperatures, with capacities in excess of 70 cm3/g achieved. HTA 3 can adsorb unwanted organic contaminants in addition to removing water and carbon dioxide. HTA 4 is a combined getter capable of eliminating all of the aforementioned contaminant species. These products, combined with the unique, precision engineered Hi-Rel encapsulation (Figure 1) allow getters to be supplied pre-activated, without the end user needing to apply a thermal treatment prior to use. The product can be fitted into any hermetic device to extend the lifetime, thus decreasing the number of failures within electronic assemblies, improving system reliability and preventing operations being shut down as frequently.


Sign in / Sign up

Export Citation Format

Share Document