Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 °C) and thermophilic (55 °C) treatments for decolourisation of textile wastewaters

Chemosphere ◽  
2004 ◽  
Vol 55 (9) ◽  
pp. 1149-1157 ◽  
Author(s):  
André B dos Santos ◽  
Iemke A.E Bisschops ◽  
Francisco J Cervantes ◽  
Jules B van Lier
Chemosphere ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 1169-1176 ◽  
Author(s):  
Frank P. van der Zee ◽  
Gatze Lettinga ◽  
Jim A. Field

2016 ◽  
Vol 207 ◽  
pp. 39-45 ◽  
Author(s):  
Aracely S. Cruz-Zavala ◽  
Aurora M. Pat-Espadas ◽  
J. Rene Rangel-Mendez ◽  
Luis F. Chazaro-Ruiz ◽  
Juan A. Ascacio-Valdes ◽  
...  

2003 ◽  
Vol 48 (6) ◽  
pp. 187-193 ◽  
Author(s):  
J.A. Field ◽  
J. Brady

Azo dyes are important persistent pollutants of textile industry effluents. Reduction of these dyes to their corresponding aromatic amines under anaerobic conditions can be used to initiate biodegradation. Since electron transfer is suggested to be rate limiting, redox mediators are being considered to improve dye reduction kinetics. This study evaluates the use of riboflavin, the redox active moiety of common occurring enzyme cofactors, as a redox mediator to accelerate the reduction of the azo dye, mordant yellow 10 (MY10). Dye reduction was found to follow zero order kinetics, the total rate constant (Vtotal) could be separated into two components: the rate of reduction due to direct contact between enzymes in the sludge with the dye (Vdirect); and the rate of reduction mediated by riboflavin (Vmediated). Riboflavin increased the Vtotal by 61% at extremely sub-stoichiometric concentrations of 9.1 μmol l-1, which corresponded to a molar riboflavin:dye ratio of 1:60. The accelerating effect of riboflavin displayed saturation kinetics at higher concentrations, with a maximum increase of Vtotal of approximately 2-fold. A model is presented which assumes that Vmediated depends on the activity of riboflavin reductase (RR) and thus follows Michaelis-Menton kinetics with respect to the riboflavin concentration. The half-velocity constant (Km) was very low (6.3 μmol l-1), indicating a high affinity of the sludge RR for riboflavin. Both Vdirect and Vmediated were found to be proportional to the assay sludge concentration. The results taken as a whole indicate that vitamin levels of riboflavin can be utilized to improve the kinetics of azo dye reduction during anaerobic treatment.


1996 ◽  
Vol 33 (3) ◽  
pp. 47-57 ◽  
Author(s):  
Elías Razo-Flores ◽  
Brian Donlon ◽  
Jim Field ◽  
Gatze Lettinga

The biodegradability of seventeen N-substituted aromatic and six alkylphenol compounds were evaluated under methanogenic conditions. Biodegradation was assessed in batch assays inoculated with unacclimated and predigested anaerobic granular sludge at 30°C under agitated conditions over a 150 day period. The compounds were supplied at sub-toxic concentrations in the assays in order to prevent inhibition to the methanogens. The biodegradability test was performed by the measurement of the methane composition in the headspace of the serum flasks. The methanogenic consortia completely mineralized 2-, 3-aminobenzoate, 2-aminophenol and 4-cresol; whereas, 4-aminobenzoate was only partially degraded. The other N-substituted compounds and the alkylphenols tested were not biodegradable under the experimental conditions employed. An additional biodegradability assay was conducted with sludge from an upward-flow anaerobic sludge bed reactor adapted to the degradation of 2-nitrophenol. This sludge mineralized 2-aminophenol without any lag phase while the unadapted sludge required 110 days of acclimation. The three aminobenzoate isomers were fully mineralized by the adapted sludge after similar lag periods observed in the unadapted sludge. The 2-nitrophenol adapted sludge cross-acclimatized to the mineralization of 5-aminosalicylate and 4-aminophenol. This constitutes the first report demonstrating the anaerobic mineralization of 5-aminosalicylate, which indicates that at least some azo dye cleavage products can be degraded in methanogenic consortia.


2006 ◽  
Vol 54 (2) ◽  
pp. 151-156 ◽  
Author(s):  
A.B. Dos Santos ◽  
F.J. Cervantes ◽  
J.B. van Lier

The discharge of dye-colored wastewaters in surface water represents a serious environmental problem because it may decrease the water transparency, therefore having an effect on photosynthesis, and a public health concern because dyes and their reducing products are carcinogenic. In recent years, big achievements have been made in the use of anaerobic granular sludge not only on colored wastewaters but also on the detoxification of other xenobiotics compounds. This paper compiles some important findings related to the potentials of high-temperature anaerobic treatment and redox mediators on the reductive decolorization of azo dyes from textile wastewaters.


2008 ◽  
Vol 57 (7) ◽  
pp. 1067-1071 ◽  
Author(s):  
A. B. Dos Santos ◽  
C. H. C. Braúna ◽  
S. Mota ◽  
F. J. Cervantes

This research aimed to evaluate the effect of nitrate on anaerobic azo dye reduction by using mesophilic bioreactors, in the absence (reactor R2) and in the presence (reactor R1) of redox mediators. The azo dye Reactive Red 2 (RR2) and the redox mediator anthraquinone-2,6-disulphonate (AQDS) were selected as model compounds. The results showed that the bioreactors were efficient on RR2 reduction, in which ethanol showed to be a good electron donor to sustain dye reduction under anaerobic conditions. The redox mediator AQDS increased the rates of reductive decolourisation, but its effect was not so remarkable compared to the previous experiments conducted. Contrary to the raised hypothesis that the nitrate addition could decrease decolourisation rates and catalytic properties of the redox mediators, no effect of nitrate was observed in the bioreactors, suggesting that the presence of nitrate in textile wastewaters will not decrease the capacity of anaerobic reactors supplemented or not with redox mediators to decolourize azo dyes.


1994 ◽  
Vol 29 (4) ◽  
pp. 581-598
Author(s):  
C.F. Shew ◽  
N. Kosaric

Abstract Toxicity of sulfite (Na2SO3) and cadmium (CdCl2) ions to anaerobic granular sludge was investigated in 1.2 litre bench-scale upflow anaerobic sludge blanket (UASB) reactors during process acclimation and shock load conditions. Minimal sulfite toxicity was observed under gradual and shock load conditions at sulfite concentrations of up to 1000 mg S/L if proper acclimation was allowed to occur. No long-term toxic effects were observed although the COD digestion rate was temporarily inhibited by shock load of sulfite. Scanning electron micrographs indicated that more sulfate-reducing bacteria were present in the granules developed in the reactors with sulfite supplement although rod-shaped Methanosaeta-like bacteria were still dominant. High bacterial growth rate was observed in the reactors which were supplied with the feed containing sulfite. The COD digestion rate was inhibited at a cadmium loading rate of 2.4 g Cd per day under both acclimation and shock load conditions. Acclimation did not seem to improve the bacteria to tolerate the toxicity of cadmium. The concentration of free cadmium was very low in the reactors under normal conditions, but increased rapidly when the COD digestion in the reactors ceased. The bacteria could not be reactivated after inhibited by cadmium. When reactors were operated at low specific COD loading rates, more inorganic precipitates were formed inside the granules which consequently settled faster.


Sign in / Sign up

Export Citation Format

Share Document