Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode

Chemosphere ◽  
2019 ◽  
Vol 219 ◽  
pp. 328-334 ◽  
Author(s):  
Victor Augusto Araújo de Freitas ◽  
Samuel Moura Breder ◽  
Flávia Paulucci Cianga Silvas ◽  
Patrícia Radino Rouse ◽  
Luiz Carlos Alves de Oliveira
Chemosphere ◽  
2021 ◽  
Vol 262 ◽  
pp. 127879 ◽  
Author(s):  
Eduardo Baudson Duarte ◽  
Mirna Aparecida Neves ◽  
Fabricia Benda de Oliveira ◽  
Marx Engel Martins ◽  
Carlos Henrique Rodrigues de Oliveira ◽  
...  

Cerâmica ◽  
2020 ◽  
Vol 66 (378) ◽  
pp. 164-171
Author(s):  
C. B. da Silva ◽  
P. R. P. de Paiva

Abstract Artificial stone materials (ASM) were produced with an iron ore tailing (IOT) from the disruption of Fundão’s tailing dam, located in Mariana, Minas Gerais State, Brazil. The IOT was separated in 3 powders with different particle sizes: DAG (<600 μm), DAR (600 to 75 μm), and DSA (<75 μm); then, each powder was characterized and mixed with a polymer resin (polyester or epoxy). ASM samples were prepared using the transfer molding technique; vacuum vibration technology was also applied to half of the samples. After curing, the ASM samples were characterized for mechanical properties and physical parameters. The microstructure of polished ASM samples was also analyzed by scanning electron microscopy. All results indicated that ASM samples produced with epoxy resin were superior to the samples made with polyester resin. The features found for the different compositions and shaping conditions for the produced ASM samples can allow various applications for these alternative materials in the construction industry, such as floor and wall tiles, providing a means of reducing the amount of IOT deposited in the tailing dams and adding economic value to this waste.


2021 ◽  
Vol 279 ◽  
pp. 122484
Author(s):  
Tony Matheus Carvalho Eugênio ◽  
Jefferson Francisco Fagundes ◽  
Queilla Santos Viana ◽  
Alan Pereira Vilela ◽  
Rafael Farinassi Mendes

2009 ◽  
Vol 52 (1-3) ◽  
pp. 15-18 ◽  
Author(s):  
L. B. He ◽  
B. Xie ◽  
F. Q. Song ◽  
C. H. Xu ◽  
J. F. Zhou ◽  
...  

2018 ◽  
Vol 930 ◽  
pp. 125-130 ◽  
Author(s):  
Luciano Fernandes de Magalhães ◽  
Isabella de Souza Morais ◽  
Luis Felipe dos Santos Lara ◽  
Domingos Sávio de Resende ◽  
Raquel Maria Rocha Oliveira Menezes ◽  
...  

The manufacture of Portland cement used in the production of concrete emits large amounts of CO2into the atmosphere, contributing to the increase of the greenhouse effect. The environmental impact generated by the mineral exploration activity is a problem of easy verification, especially in open pit mines. The present work evaluated the possibility of using iron ore tailing as an addition to the partial replacement of the cement in mortars. The iron ore tailings were processed by drying in oven (48h at 105oC) and milling in a planetary mill (10min at 300RPM), obtaining medium grain size of 14,13 μm. For the characterization, laser granulometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal and thermogravimetric analysis (DTA / TGA) were performed. The sample is composed predominantly by quartz, hematite, goethite and gibbsite. After the characterization, the waste was used in the preparation of test specimens, with 10, 20 and 30% weight substitution of the cement. The composites were submitted to compression tests, with ages of 3, 7 and 28 days, using a strength rate of 0,25MPa/s. The mortars with 10, 20 and 30% of substitution presented resistance of 41.65, 36.26 and 31.64 MPa, being able to be characterized as category of Portland cement of resistance 40, 32 and 25 respectively. Considering the reduction of cement in the mortars produced, the results of compressive strength were relevant for the substitutions. The cements produced with the substitutions according to the Brazilian standards under the mechanical aspect can be classified as Portland cement.


ChemSusChem ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 536-542 ◽  
Author(s):  
Krzysztof Skowerski ◽  
Stefan J. Czarnocki ◽  
Paweł Knapkiewicz

2015 ◽  
Vol 74 (3) ◽  
Author(s):  
S. M. Zain ◽  
N. L. Ching ◽  
S. Jusoh ◽  
S. Y. Yunus

The aim of this study is to identify the relationship between the rate of electricity generation and the rate of carbon and nitrogen removal from wastewater using different MFC processes.  Determining whether the generation of electricity using MFC process could be related to the rate of pollutant removal from wastewater is noteworthy. Three types of MFC process configurations include the batch mode (SS), a continuous flow of influent with ferricyanide (PF) as the oxidizing agent and a continuous flow of influent with oxygen (PU) as the oxidizing agent. The highest quantity of electricity generation was achieved using the continuous flow mode with ferricyanide (0.833 V), followed by the continuous flow mode with oxygen (0.589 V) and the batch mode (0.352 V). The highest efficiency of carbon removal is also achieved by the continuous flow mode with ferricyanide (87%), followed by the continuous flow mode with oxygen (51%) and the batch mode (46%). Moreover, the continuous flow mode with ferricyanide produced the highest efficiency for nitrogen removal (63%), followed by the continuous flow mode with oxygen (54%) and the batch mode (27%).


Sign in / Sign up

Export Citation Format

Share Document