scholarly journals Artificial stone production using iron ore tailing (IOT)

Cerâmica ◽  
2020 ◽  
Vol 66 (378) ◽  
pp. 164-171
Author(s):  
C. B. da Silva ◽  
P. R. P. de Paiva

Abstract Artificial stone materials (ASM) were produced with an iron ore tailing (IOT) from the disruption of Fundão’s tailing dam, located in Mariana, Minas Gerais State, Brazil. The IOT was separated in 3 powders with different particle sizes: DAG (<600 μm), DAR (600 to 75 μm), and DSA (<75 μm); then, each powder was characterized and mixed with a polymer resin (polyester or epoxy). ASM samples were prepared using the transfer molding technique; vacuum vibration technology was also applied to half of the samples. After curing, the ASM samples were characterized for mechanical properties and physical parameters. The microstructure of polished ASM samples was also analyzed by scanning electron microscopy. All results indicated that ASM samples produced with epoxy resin were superior to the samples made with polyester resin. The features found for the different compositions and shaping conditions for the produced ASM samples can allow various applications for these alternative materials in the construction industry, such as floor and wall tiles, providing a means of reducing the amount of IOT deposited in the tailing dams and adding economic value to this waste.

Chemosphere ◽  
2019 ◽  
Vol 219 ◽  
pp. 328-334 ◽  
Author(s):  
Victor Augusto Araújo de Freitas ◽  
Samuel Moura Breder ◽  
Flávia Paulucci Cianga Silvas ◽  
Patrícia Radino Rouse ◽  
Luiz Carlos Alves de Oliveira

Chemosphere ◽  
2021 ◽  
Vol 262 ◽  
pp. 127879 ◽  
Author(s):  
Eduardo Baudson Duarte ◽  
Mirna Aparecida Neves ◽  
Fabricia Benda de Oliveira ◽  
Marx Engel Martins ◽  
Carlos Henrique Rodrigues de Oliveira ◽  
...  

2021 ◽  
Vol 279 ◽  
pp. 122484
Author(s):  
Tony Matheus Carvalho Eugênio ◽  
Jefferson Francisco Fagundes ◽  
Queilla Santos Viana ◽  
Alan Pereira Vilela ◽  
Rafael Farinassi Mendes

2013 ◽  
Vol 71 (9) ◽  
pp. 4177-4186 ◽  
Author(s):  
Aline Sueli de Lima Rodrigues ◽  
Guilherme Malafaia ◽  
Adivane Terezinha Costa ◽  
Hermínio Arias Nalini Júnior

2018 ◽  
Vol 930 ◽  
pp. 125-130 ◽  
Author(s):  
Luciano Fernandes de Magalhães ◽  
Isabella de Souza Morais ◽  
Luis Felipe dos Santos Lara ◽  
Domingos Sávio de Resende ◽  
Raquel Maria Rocha Oliveira Menezes ◽  
...  

The manufacture of Portland cement used in the production of concrete emits large amounts of CO2into the atmosphere, contributing to the increase of the greenhouse effect. The environmental impact generated by the mineral exploration activity is a problem of easy verification, especially in open pit mines. The present work evaluated the possibility of using iron ore tailing as an addition to the partial replacement of the cement in mortars. The iron ore tailings were processed by drying in oven (48h at 105oC) and milling in a planetary mill (10min at 300RPM), obtaining medium grain size of 14,13 μm. For the characterization, laser granulometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal and thermogravimetric analysis (DTA / TGA) were performed. The sample is composed predominantly by quartz, hematite, goethite and gibbsite. After the characterization, the waste was used in the preparation of test specimens, with 10, 20 and 30% weight substitution of the cement. The composites were submitted to compression tests, with ages of 3, 7 and 28 days, using a strength rate of 0,25MPa/s. The mortars with 10, 20 and 30% of substitution presented resistance of 41.65, 36.26 and 31.64 MPa, being able to be characterized as category of Portland cement of resistance 40, 32 and 25 respectively. Considering the reduction of cement in the mortars produced, the results of compressive strength were relevant for the substitutions. The cements produced with the substitutions according to the Brazilian standards under the mechanical aspect can be classified as Portland cement.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5369
Author(s):  
Yolanda Spairani ◽  
Arianna Cisternino ◽  
Dora Foti ◽  
Michela Lerna ◽  
Salvador Ivorra

In this article, the effectiveness of the bioconsolidation technique applied to degraded structural materials is illustrated as a new method of consolidation and conservation of the existing building heritage in a less invasive way. Satisfactory results have been obtained by an experimental campaign carried out through non-destructive diagnostic tests, static destructive mechanical tests, and microstructural analyses on a series of natural stone material specimens and artificial stone materials before and after the use of bioconsolidants. The consolidated specimens have been tested after three to four weeks after the application of the M3P nutritional solution on each specimen. The effect on the microstructure of this technique has also been observed using scanning electron microscope and optical photomicrograph, the formation of new calcium carbonate crystals promoting the structural consolidation of the materials under examination was observed in all the specimens analyzed.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-40 ◽  
Author(s):  
X.B. Huang ◽  
X X.W. ◽  
J.J. Song ◽  
C.G. Bai ◽  
R.D. Zhang ◽  
...  

The relative contact angle (?RCA) for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57? to 73?. With the volume % of goethite (?G) as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56?, while that for goethite free samples is about 77?. Physical properties, such as surface morphology (SMI) and pore volume (Vpore) can influence the relative contact angle. The ?G can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of ?G for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97) with the calculated ones based on the research from Iveson, et al. (2004). Comparing with the model developed by Iveson et al.(2004), the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.


Sign in / Sign up

Export Citation Format

Share Document