Artificial soil nutrient, aggregate stability and soil quality index of restored cut slopes along altitude gradient in southwest China

Chemosphere ◽  
2020 ◽  
Vol 246 ◽  
pp. 125687 ◽  
Author(s):  
Mengke Zhu ◽  
Siqian Yang ◽  
Shenghao Ai ◽  
Xiaoyan Ai ◽  
Xue Jiang ◽  
...  
Agrociencia ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. 1-18
Author(s):  
Bülent Turgut ◽  
Merve Ateş ◽  
Halil Akıncı Akıncı

The soil quality index is a quantitative assessment concept and it is used in the evaluation of ecosystem components. Because of the high potential for agriculture and biodiversity, deltas are the most valuable parts of the ecosystem. This study aimed to determine the soil quality index (SQI) in the Batumi Delta, Georgia. For this purpose, the study area was divided into five plots due to their morphological positions (L1, L2, L3, L4, and L5). A total of 125 soil samples were taken for analysis including clay content (CC), silt content (SC), sand content (SaC), mean weight diameter (MWD), aggregate stability (AS), amount of water retained under -33 kPa (FC) and -1500 kPa (WP) pressures and organic matter content (OM). These properties were used as the main criteria, and the Analytic Hierarchy Process (AHP) and Factor Analysis were used for weighting them. Sub-criteria were scored using expert opinion and the linear score functions, such as “more is better” and “optimum value”. For determining SQI, the additive method (SQIA), the weighted method with AHP (SQIAHP), and the weighted method with factor analysis (SQIFA) were used. The resulting SQI scores of the three methods were ordered as SQIAHP>SQIA>SQIFA, but these differences were not significant. However, the SQI scores of the plots (p≤0.01) showed statistically significant differences and were ordered as L5>L4>L3>L2>L1.


Author(s):  
Emre Çomaklı ◽  
Bülent Turgut

Afforestation is an essential strategy for erosion control. The objective of this study was to determine the soil quality index (SQI) in established afforested areas of different ages for erosion control in Erzurum, Turkey. Three afforested areas were selected as plots considering their establishment periods: + 40 years old (AA<sub>&gt;40</sub>), 10–40 years old (AA<sub>10–40</sub>), and less than 10 years old (AA<sub>&lt;10</sub>). Forty soil samples were taken in each plot area over the 0–15 and 15–30 cm depths. The soil samples were analysed for the texture, mean weight diameter, aggregate stability, pH, electrical conductivity, total nitrogen, total carbon, and total sulfur contents. These properties were used as the soil quality indicators, whereby the analytic hierarchy process (AHP) and principal component analysis (PCA) were used to establish their relative importance for describing the soil quality. The indicators were scored using the linear score functions of “more is better” and “optimum value”. For determining the SQI, the additive method (SQI<sub>A</sub>), the weighted method with AHP (SQI<sub>AHP</sub>), and the weighted method with PCA (SQI<sub>PCA</sub>) were used. The SQI scores of the plots showed statistically significant differences. In all three methods, the highest SQI value was obtained from the AA<sub>&gt;40</sub> plots.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


2021 ◽  
Vol 125 ◽  
pp. 107580
Author(s):  
Wuping Huang ◽  
Mingming Zong ◽  
Zexin Fan ◽  
Yuan Feng ◽  
Shiyu Li ◽  
...  

2015 ◽  
Vol 79 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
Vladimir Ivezić ◽  
Bal Ram Singh ◽  
Vlatka Gvozdić ◽  
Zdenko Lončarić

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


Sign in / Sign up

Export Citation Format

Share Document