Potential of anammox process towards high-efficient nitrogen removal in wastewater treatment: theoretical analysis and practical case with a SBR

Chemosphere ◽  
2021 ◽  
pp. 130729
Author(s):  
Yiyu Li ◽  
Meng Zhang ◽  
Dongdong Xu ◽  
Xiaoyu Shan ◽  
Ping Zheng
2017 ◽  
Author(s):  
◽  
Jashan Gokal

Domestic wastewater contains a high nutrient load, primarily in the form of Carbon (C), Nitrogen (N), and Phosphorous (P) compounds. If left untreated, these nutrients can cause eutrophication in receiving environments. Biological wastewater treatment utilizes a suspension of microorganisms that metabolize this excess nutrient load. Nitrogen removal in these systems are due to the synergistic processes of nitrification and denitrification, each of which requires its own set of operating parameters and controlling microbial groups. An alternative N-removal pathway termed the anammox process allows for total N-removal in a single step under anoxic conditions. This process, mediated by the anammox bacterial group, requires no organic carbon, produces negligible greenhouse gases and requires almost 50 % less energy than the conventional process, making it a promising new technology for efficient and cost-effective N-removal. In this study, a sequencing batch reactor (SBR) was established for the autotrophic removal of N-rich wastewater through an anammox-centric bacterial consortia. The key microbial members of this consortia were characterized and quantified over time using molecular methods and next generation sequencing to determine if the operational conditions had any effect on the seed inoculum population composition. Additionally, local South African wastewater treatment plants were screened for the presence of anammox bacteria through 16S rRNA amplification and enrichment in different reactor types. A 3 L bench scale SBR was inoculated with active biomass (~ 5 % (v/v)) sourced from a parent anammox enrichment reactor, and maintained at a temperature of 35 °C ± 1 °C. The reactor was fed with a synthetic wastewater medium containing no organic C, minimal dissolved oxygen (< 0.5 mg/L), and N in the form of ammonium and nitrite in the ratio of 1:1.3. The reactor was operated for a period of 366 days and the effluent ammonium, nitrite and nitrate were measured during this period. The hydraulic retention time was controlled at 4.55 days from Day 1 to Day 250, and thereafter shortened to 1.52 days from Day 251 to Day 360 due to an increased nitrogen removal rate (NRR). During Phase I of operation (Day 1 to Day 150), the reactor performance gradually increased up to an NRR of ~160 mg N/day. During Phase II (Day 151 to Day 250), the overall reactor performance decreased with the NRR decreasing to ~90 mg N/day, while Phase III (Day 251 to Day 366) displayed a gradual recovery of NRR back to the reactor optimum of ~160 mg N/day. The accumulation of nitrate in the effluent during the latter parts of Phase II and Phase III, coupled with oxygen ingress (~2.1 mg/L) in the same period, indicated that it was not the anammox pathway that was dominating N-removal within the reactor, but more likely the second half of the nitrification pathway mediated by the nitrite oxidizing bacteria (NOB). This was further confirmed through molecular analysis, which indicated that the bacterial population had shifted significantly over the course of reactor operation. Quantitative PCR methods displayed a decrease in all the key N-removing population groups from Day 1 to Day 140, and a marginal increase in anammox and aerobic ammonia oxidizing bacteria from Day 140 – Day 260. From Day 300 onwards, NOB had started dominating the system, simultaneously suppressing the growth of other N-removing bacterial groups. Despite this, the NRR peaked during this period, indicating an alternative mechanism for ammonia removal within the reactor system. A total population analysis using NGS was also performed, which corroborated the QPCR results and displayed a population shift away from anammox bacteria towards predominantly NOB and members of the phylum Chloroflexi. The proliferation of aerobic NOB and Chloroflexi, and the suppression of anammox bacteria, indicated that DO ingress was indeed the primary cause of the population shift within the reactor. Despite this population shift, N-removal within the reactor remained high. New pathways have recently emerged which implicate these two groups as potential N oxidizers, with specific NOB groups showing the ability for oxidation of ammonia through the comammox process, and members of the Phylum Chloroflexi being capable of nitrite reduction. This could imply that an alternate pathway was responsible for the majority of N-removal within the system, in addition to the anammox and conventional nitrification pathways. Additionally, in an attempt to detect a local anammox reservoir, eleven wastewater systems from around South Africa were screened for the presence of anammox bacteria. Through direct and nested PCR-based screening, anammox bacteria was not detectable in any of the activated sludge samples tested. Based on the operating conditions of the source wastewater systems, a subset of three sludge samples were selected for further enrichment. After 60-110 days of enrichment in multiple reactor configurations, only one reactor sample tested positive for the presence of anammox bacteria. Although this result indicates that anammox bacteria might not be ubiquitous within every biological wastewater system, it is more likely that anammox bacteria might only be present at undetectable levels, and that an extended enrichment prior to screening is necessary for a true representation of anammox bacterial prevalence in an environmental sample.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1995 ◽  
Vol 32 (7) ◽  
pp. 135-142
Author(s):  
E. Görgün ◽  
N. Artan ◽  
D. Orhon ◽  
R. Tasli

Effective nitrogen removal is now required to protect water quality in sensitive coastal areas. This involves a much more difficult treatment process than for conventional domestic sewage as wastewater quantity and quality exhibits severe fluctuations in touristic zones. Activated sludge is currently the most widely used wastewater treatment and may be upgraded as a predenitrification system for nitrogen removal. Interpretation of nitrification and denitrification kinetics reveal a number of useful correlations between significant parameters such as sludge age, C/N ratio, hydraulic retention time, total influent COD. Nitrogen removal potential of predenitrification may be optimized by careful evaluation of wastewater character and the kinetic correlations.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


1999 ◽  
Vol 39 (6) ◽  
pp. 191-198 ◽  
Author(s):  
Timothy J. Hurse ◽  
Michael A. Connor

In an attempt to gain a better understanding of ammonia and nitrogen removal processes in multi-pond wastewater treatment lagoons, an analysis was carried out of data obtained during regular monitoring of Lagoon 115E at the Western Treatment Plant in Melbourne. To do this, a contour plot approach was developed that enables the data to be displayed as a function of pond number and date. Superimposition of contour plots for different parameters enabled the dependence of ammonia and nitrogen removal rates on various lagoon characteristics to be readily assessed. The importance of nitrification as an ammonia removal mechanism was confirmed. Temperature, dissolved oxygen concentration and algal concentration all had a significant influence on whether or not sizeable nitrifier populations developed and persisted in lagoon waters. The analysis made it evident that a better understanding of microbial, chemical and physical processes in lagoons is needed before their nitrogen removal capabilities can be predicted with confidence.


2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.


Sign in / Sign up

Export Citation Format

Share Document