Characteristics of nitrogen removal and microbial distribution by application of spent sulfidic caustic in pilot scale wastewater treatment plant

2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.

1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2010 ◽  
Vol 61 (9) ◽  
pp. 2259-2266 ◽  
Author(s):  
Styliani Kantartzi ◽  
Paraschos Melidis ◽  
Alexander Aivasidis

In the present study, a laboratory scale system, consisting of a primary settling tank, a continuous stirred tank reactor and a clarifier were constructed and operated, using wastewater from the municipal wastewater treatment plant in Xanthi, Greece. The system operated under intermittent aeration in aerobic/anoxic conditions and feeding of the wastewater once in every cycle. The unit was inoculated with sludge, which originated from the recirculation stream of the local wastewater treatment plant. The wastewater was processed with hydraulic retention time (HRT) of 12 h, in which various experimental states were studied regarding the combination of aerobic and anoxic intervals. The wastewater was fed in limited time once in every cycle of aerobic/anoxic conditions at the beginning of the anoxic period. The two states that exhibited highest performance in nitrification and total nitrogen removal were, then, repeated with HRT of 10 h. The results show that, regarding the nitrification stage and the organic load removal, the intermittent system achieved optimum efficiency, with an overall removal of biological oxygen demand (BOD5) and ammonium nitrogen in the range of 93–96% and 91–95% respectively. As far as the total nitrogen removal is concerned, and if the stage of the denitrification is taken into account, the performance of the intermittent system surpassed other methods, as it is shown by the total Kjeldahl nitrogen (TKN) removal efficiency of 85–87%. These operating conditions suppressed the growth of filamentous organisms, a fact reflected at the SVI values, which were lower than 150 ml/g.


Sign in / Sign up

Export Citation Format

Share Document