Biocompatibility of Steinernema glaseri with a nematode trapping fungus Arthrobotrys superba on different nutrient media

2020 ◽  
Vol 40 (5) ◽  
pp. 412-416
Author(s):  
Varsha Baweja ◽  
Renuka Rawat

Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 484e-485
Author(s):  
Patrick C. Wilson ◽  
Ted Whitwell ◽  
Steven J. Klaine

This research focuses on the potential use of Canna hybrida `King Humbert' for removing simazine from contaminated water generated at golf courses and ornamental nurseries. Because of simazine's herbicidal activity, it is important for levels in solution not to exceed plant tolerance levels. Tolerance levels for C. hybrida were determined by dosing plants for 7 d with 0, 0.01, 0.03, 0.1, 0.3, 1.0, or 3.0 mg simazine/L nutrient media. Measurements of 7-d fresh mass production and photosynthetic efficiency (Fv/Fm) were taken. Simazine uptake and distribution within the plant was determined by dosing plants with 2.03 mCi 14C-simazine (0.243 mg/L) for 1, 3, 5, or 7 d. Plant tissues were analyzed by combustion and liquid scintillation counting. Fresh mass production was reduced 66% and 78% for plants exposed to 1.0 and 3.0 mg/L, respectively. Likewise, photosynthetic efficiency was reduced to 66% and 40% of the controls at the same respective concentrations. Plant uptake of simazine accounted for 13%, 34%, 48%, and 65% of the original simazine in the dosing solution after 1-, 3-, 5-, and 7-d exposure, respectively. This simazine was distributed primarily between roots and leaves.


2015 ◽  
Vol 95 (1) ◽  
pp. 20-26 ◽  
Author(s):  
E.M. Mostafa ◽  
A.M.A. Hassan

Exposure ofAzollaplants to UV-B radiation for 6 h resulted in a decrease in biomass and relative growth rate (RGR), which coincided with an increase in doubling time (DT) as compared with the control. Also, the protein content decreased. On the other hand, hydrogen peroxyde (H2O2) and malondialdehyde (MDA) accumulated significantly in UV-treatedAzollaplants. Conversely, the addition of selenium (Se) at 1 ppm resulted in a significant increase in biomass and protein content of untreated and UV-treatedAzollaplants, and a significant reduction in both H2O2and MDA. Moreover, the addition of Se to UV-treated and untreatedAzollaplants resulted in a significant increase in total ascorbate and total glutathione (GSH) contents compared with the control and UV-stressedAzollaplants. Also, glutathione redox potential (GSH/TG) increased significantly in UV-treatedAzollaplants in the presence of Se. There also was a significant increase (38%) in ascorbate peroxidase (APX) activity in UV-treated plants compared with the control. APX activity in the presence of Se did not change significantly compared with the control. Glutathione reductase (GR) activity increased significantly in UV-treatedAzolla, while glutathione peroxidase (GSH-PX) activity did not. On the other hand, both GSH-PX and GR activity in untreated and UV-treatedAzollaplants were significantly enhanced by the application of Se to the nutrient media at a concentration of 1 ppm. Therefore, we can conclude that Se protectsAzollaplants from UV-B stress.


3 Biotech ◽  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Denis V. Axenov-Gribanov ◽  
Maria M. Morgunova ◽  
Ulyana A. Vasilieva ◽  
Stanislav V. Gamaiunov ◽  
Maria E. Dmitrieva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document