A polythiophene–silver nanocomposite for headspace needle trap extraction

2016 ◽  
Vol 1460 ◽  
pp. 1-8 ◽  
Author(s):  
Habib Bagheri ◽  
Solmaz Banihashemi ◽  
Samaneh Jelvani

In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


2016 ◽  
Vol 22 (4) ◽  
Author(s):  
Šarūnas MEŠKINIS ◽  
Iryna YAREMCHUK ◽  
Viktoras GRIGALIŪNAS ◽  
Andrius VASILIAUSKAS ◽  
Arvydas ČIEGIS

2016 ◽  
Vol 84 ◽  
pp. 281-288 ◽  
Author(s):  
Gownolla Malegowd Raghavendra ◽  
Jeyoung Jung ◽  
Dowan kim ◽  
Jongchul Seo

Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 12969-12975 ◽  
Author(s):  
Xiang Fei ◽  
Tao Lu ◽  
Jun Ma ◽  
Shenmin Zhu ◽  
Di Zhang

Photonic crystals with both optical and thermal responses based on a natural butterfly wing template.


2021 ◽  
pp. 095400832110645
Author(s):  
Karim Benzaoui ◽  
Achour Ales ◽  
Ahmed Mekki ◽  
Abdelhalim Zaoui ◽  
Boudjemaa Bouaouina ◽  
...  

The conventional electromagnetic interference (EMI) shielding materials are being gradually replaced by a new generation of supported conducting polymer composites (CPC) films due to their many advantages. This work presents a contribution on the effects of silane surface–modified flexible polypyrrole-silver nanocomposite films on the electromagnetic interference shielding effectiveness (EMI-SE). Thus, the UV-polymerization was used to in-situ deposit the PPy-Ag on the biaxial oriented polyethylene terephthalate (BOPET) flexible substrates whose surfaces were treated by 3-aminopropyltrimethoxysilane (APTMS). X-ray Photoelectron Spectroscopy (XPS) analyzes confirmed the APTMS grafting procedure. Structural, morphological, thermal, and electrical characteristics of the prepared films were correlated to the effect of substrate surface treatment. Thereafter, EMI-SE measurements of the elaborated films were carried out as per ASTM D4935 standard for a wide frequency band extending from 50 MHz to 18 GHz. The obtained results confirmed that the APTMS-treated BOPET film exhibit higher EMI shielding performance and better electrical characteristics compared to the untreated film. In fact, a 32% enhancement of EMI-SE was noted for the treated films compared to the untreated ones. Overall, these results put forward the role played by the surface treatment in strengthening the position of flexible PPy-Ag supported films as high-performance materials in electronic devices and electromagnetic interference shielding applications.


2019 ◽  
Vol 19 ◽  
pp. 7-15 ◽  
Author(s):  
Maria do Livramento Linhares Rodrigues Menezes ◽  
Natália da Rocha Pires ◽  
Pablyana Leila Rodrigues da Cunha ◽  
Morsyleide de Freitas Rosa ◽  
Bartolomeu Warlene Silva de Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document