Three approaches to improving performance of liquid chromatography using contour maps with pressure, time, and number of theoretical plates

2021 ◽  
Vol 1637 ◽  
pp. 461778
Author(s):  
Masahito Ito ◽  
Katsutoshi Shimizu ◽  
Kiyoharu Nakatani
2012 ◽  
Vol 84 (3) ◽  
pp. 1214-1219 ◽  
Author(s):  
Wim De Malsche ◽  
Jeff Op De Beeck ◽  
Selm De Bruyne ◽  
Han Gardeniers ◽  
Gert Desmet

2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
J. F. Hainfeld ◽  
J. S. Wall

Cost reduction and availability of specialized hardware for image processing have made it reasonable to purchase a stand-alone interactive work station for computer aided analysis of micrographs. Some features of such a system are: 1) Ease of selection of points of interest on the micrograph. A cursor can be quickly positioned and coordinates entered with a switch. 2) The image can be nondestructively zoomed to a higher magnification for closer examination and roaming (panning) can be done around the picture. 3) Contrast and brightness of the picture can be varied over a very large range by changing the display look-up tables. 4) Marking items of interest can be done by drawing circles, vectors or alphanumerics on an additional memory plane so that the picture data remains intact. 5) Color pictures can easily be produced. Since the human eye can detect many more colors than gray levels, often a color encoded micrograph reveals many features not readily apparent with a black and white display. Colors can be used to construct contour maps of objects of interest. 6) Publication quality prints can easily be produced by taking pictures with a standard camera of the T.V. monitor screen.


Author(s):  
J.P. Schroeter ◽  
M.A. Goldstein ◽  
J.P. Bretaudiere ◽  
L.H. Michael ◽  
R.L. Sass

We have recently established the existence of two structural states of the Z band lattice in cross section in cardiac as well as in skeletal muscle. The two structural states are related to the contractile state of the muscle. In skeletal muscle at rest, the Z band is in the small square (ss) lattice form, but tetanized muscle exhibits the basket weave (bw) form. In contrast, unstimu- lated cardiac muscle exhibits the bw form, but cardiac muscles exposed to EGTA show the ss form.We have used two-dimensional computer enhancement techniques on digitized electron micrographs to compare each lattice form as it appears in both cardiac and skeletal muscle. Both real space averaging and fourier filtering methods were used. Enhanced images were displayed as grey-scale projections, as contour maps, and in false color.There is only a slight difference between the lattices produced by the two different enhancement techniques. Thus the information presented in these images is not likely to be an artifact of the enhancement algorithm.


Sign in / Sign up

Export Citation Format

Share Document