scholarly journals Patterns of protein adsorption in ion-exchange particles and columns: evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms

2021 ◽  
pp. 462412
Author(s):  
Jürgen Beck ◽  
Eric van Lieres ◽  
Negar Zaghi ◽  
Samuel Leweke ◽  
Giorgio Carta ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jun Ling ◽  
Yixiao Li ◽  
Bo Zhou ◽  
Baokun Zhu ◽  
Xinru Zhang ◽  
...  

A macroporous amphoteric ion exchange membrane was prepared by blending chitosan (CS) and carboxymethylcellulose (CMC) in aqueous solution, with glutaraldehyde as a crosslinking agent and silica particles as porogens. The good compatibility between CS and CMC was confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR). A scanning electron microscope was used to observe the morphology of CS/CMC blend membranes, in which a three-dimensional opening structure was formed, and no phase separation was discovered. Tobacco extract was used as a separation model to get tobacco protein. And the effects of the pH value, adsorption time, CS/CMC content, initial protein concentration, and CS/CMC composition on tobacco protein adsorption were investigated by coomassie blue staining during the adsorption process. The results showed that the maximum adsorption capacity of 271.78 mg/g can be achieved under the condition of pH 6.15, adsorption time of 8 h, initial protein concentration of 1.52 mg/mL, and CS/CMC weight of 0.05 g with a mass ratio of 80 : 20. Tobacco proteins were successfully separated from tobacco extract by adjusting the pH of the feed and the desorption solutions to change their electrostatic force. It was found that the high desorption capacity and protein desorption efficiency can be achieved at pH 9.40. The blend membranes also demonstrated good reusability after 3 adsorption-desorption cycles.


2008 ◽  
Vol 273-276 ◽  
pp. 637-642 ◽  
Author(s):  
Machiko Ode ◽  
N. Garimella ◽  
Muneaki Ikeda ◽  
Hideyuki Murakami ◽  
Yong Ho Sohn

Average ternary interdiffusion coefficients in Ni3Al with Ir additions have been determined using solid-to-solid diffusion couples annealed at 1200°C for 5 hours. Disc shaped alloy specimens were prepared by the vacuum arc melting at compositions of Ni-24Al, Ni-25Al, Ni-26Al, Ni-23.5Al-1Ir, Ni-24.5Al-1Ir, Ni-23Al-2Ir, Ni-23Al-2Ir, Ni-24Al-2Ir, Ni-23Al-3Ir (at.%). Surfaces of alloys were polished down to 1200 grit and diffusion couples were assembled in Si3N4 jig for initial bonding heat treatment at 1200°C for 0.5 hours. Additional diffusion anneal was carried out at 1200°C for 4.5 hours outside of Si3N4 jig so that diffusion couples can be water quenched. Concentration profiles of individual components were measured by electron probe microanalysis using pure standard of Ni, Al and Ir. Interdiffusion flux of individual component was determined directly from the experimental concentration profiles, and the moments of interdiffusion flux were examined to calculate the average ternary interdiffusion coefficients, D˜ ij k either with Al or Ni as dependent component. Calculated interdiffusion coefficients suggest that Ir-alloyed Al2O3-forming oxidation resistant coatings would be beneficial to reduce the interdiffusion flux of Ni from superalloy substrates to the coating, and reduce the interdiffusion flux of Al from the coating to the superalloy substrate.


1991 ◽  
Vol 244 ◽  
Author(s):  
Xiaoming Li ◽  
Paul F. Johnson

ABSTRACTDuring the recent years, a great variety of ion-exchange processes, including one-step or two-step electric field assisted ion-exchange processes, have been developed to fabricate different kinds of passive planar glass waveguides, e.g., surface waveguides, which correspond to surface maximum concentration, or buried waveguides, which correspond to inside maximum concentration [1,2,3]. Theoretical calculation of ionic concentration distribution has been of interest since refractive index is generally a linear function of concentration. A general analytical solution to calculate both surface and buried concentration distributions from different ion-exchange processes, however, has not yet been presented. In addition, traditional ion-exchange has been carried out only with constant surface concentration boundary conditions. Little attention has been paid, either experimentally or theoretically, to ion-exchange processes with variable boundary conditions. In fact, the time-dependent surface concentration is experimentally observed for the ion-exchange of GRIN glass in molten salt bath [4]. Very recently, a novel one-step technique [5,6] involving electric field assisted ion-exchange of Na+ in glass by Ag+ from molten AgNO3 bath with decaying silver concentration has been developed to produce buried Ag+ concentration profiles in glass. As the accurate and reproducible processes are very important for fabricating ion-exchanged glass waveguides, theoretical modeling and analysis on the new process are needed.In this paper, the one-dimensional field-assisted linear diffusion equation has been analytically solved by Laplace transformation to theoretically calculate concentration profiles produced by field enhanced ion-exchange process with exponentially decaying surface concentration boundary conditions. The applications of the solution to a variety of ion-exchange processes with different boundary or processing conditions for optical waveguide fabrication have been discussed. The theoretical results prove that the solution is a general analytical solution which can be used to calculate either surface concentration profiles or buried concentration profiles.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaomin Zhang ◽  
Jie Sun

Chitosan sulfate was prepared and characterized as a new chromatography media for protein separation. The degree of sulfonation of chitosan could be well controlled and impacted under conditions in the synthesis process. The prepared chitosan sulfate shows improved binding capacity with proteins. Sulfonated chitosan shows improved ion-exchange adsorption properties with proteins, which could have good potential in protein purification.


2002 ◽  
Vol 199 (1-2) ◽  
pp. 161-166 ◽  
Author(s):  
Ute Reichert ◽  
Thomas Linden ◽  
Georges Belfort ◽  
Maria-Regina Kula ◽  
Jörg Thömmes

Sign in / Sign up

Export Citation Format

Share Document