Impact of changes in physicochemical parameters of the mobile phase along the column on the retention time in gradient liquid chromatography. Part A – Temperature gradient

2021 ◽  
pp. 462509
Author(s):  
Krzysztof Kaczmarski ◽  
Marcin Chutkowski
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Irena Malinowska ◽  
Katarzyna E. Stępnik

Micellar liquid chromatography (MLC) with the use of high performance liquid chromatography (HPLC) was used to determine some physicochemical parameters of six biogenic amines: adrenaline, dopamine, octopamine, histamine, 2-phenylethylamine, and tyramine. In this paper, an influence of surfactant’s concentration and pH of the micellar mobile phase on the retention of the tested substances was examined. To determine the influence of surfactant’s concentration on the retention of the tested amines, buffered solutions (at pH 7.4) of ionic surfactant—sodium dodecyl sulfate SDS (at different concentrations) with acetonitrile as an organic modifier (0.8/0.2 v/v) were used as the micellar mobile phases. To determine the influence of pH of the micellar mobile phase on the retention, mobile phases contained buffered solutions (at different pH values) of sodium dodecyl sulfate SDS (at 0.1 M) with acetonitrile (0.8/0.2 v/v). The inverse of value of retention factor () versus concentration of micelles () relationships were examined. Other physicochemical parameters of solutes such as an association constant analyte—micelle ()—and partition coefficient of analyte between stationary phase and water (hydrophobicity descriptor) () were determined by the use of Foley’s equation.


2020 ◽  
Vol 5 ◽  
pp. 72-81
Author(s):  
Dmytro Orlenko ◽  
Volodymyr Yakovenko ◽  
Vyacheslav Plastun ◽  
Liliia Vyshnevska

According to the EP monograph "Sodium hyaluronate" for identification they use the infrared transmission spectrum of the substance, quantification is carried out by spectrophotometry. The aim of the work was to develop a method for quantitative determination of hyaluronic acid in the gel in the presence of other substances and its validation. Materials and Methods. The object of the study were samples of combined dental gel of the following composition: metronidazole benzoate 16 mg/g, miramistin 5 mg / g, sodium hyaluronate 2 mg / g. Identification and quantification of sodium hyaluronate was performed by liquid chromatography (SPhU, 2.2.29, 2.2.46). The test solution and the reference solution were chromatographed, obtaining the number of parallel chromatograms not less than when checking the suitability of the chromatographic system. Chromatography is performed on a liquid chromatograph with a diode-matrix detector under the following conditions: chromatographic column PL-aquagel-OH, Agilent size 300 mm × 7.5 mm, with a particle size of sorbent 8 μm; mobile phase A: 0.1 M sodium sulfate solution; mobile phase B: acetonitrile for chromatography P; detection at a wavelength of 210 nm. Results. The retention time of sodium hyaluronate on the chromatogram of the test sample of the gel coincides with the peak and the retention time on the chromatogram of the comparison solution of the standard sample of the substance. The suitability of the chromatographic system for 3 parallel determinations was checked: the relative standard deviation (RSD) is equal to 0.25, the number of theoretical plates is 980, the symmetry coefficient is 1.293. The validation characteristics of the developed methodology meet the established eligibility criteria. The spectral purity coefficients (Fp) of the sodium hyaluronate peak on the chromatograms of the model solution are Fp1=997.665 and Fp2=997,802. The method is linear in the range of sodium concentration of hyaluronate 80–120 %, the calculated linear dependence of the reduced area of the chromatographic peak on the reduced concentration of sodium hyaluronate is |a|=1.9490≤Δa=2.56. The confidence interval of the unit value for the sample of relations is found / entered Δz=1.08, which corresponds to the condition Δz≤1.6 %. The value of the systematic error is equal to δ=0.12, which satisfies the condition δ≤0.51 %. Conclusions. The method of quantitative determination of sodium hyaluronate by the method of high-performance liquid chromatography has been developed and investigated. The method allows the identification and quantification of sodium hyaluronate in the composition of the dental gel, in the presence of metronidazole benzoate and miramistin. Validation of the methodology was performed and the main validation characteristics were determined. In terms of specificity, linearity, correctness, convergence of the method meets the eligibility criteria established by the SPhU.


The Analyst ◽  
2003 ◽  
Vol 128 (11) ◽  
pp. 1341 ◽  
Author(s):  
Paal Molander ◽  
Raymond Olsen ◽  
Elsa Lundanes ◽  
Tyge Greibrokk

2016 ◽  
Vol 12 (20) ◽  
pp. 5215-5217 ◽  
Author(s):  
Rukkumani V ◽  
Saravanakumar M

The presence of harmful compounds like caffeine and carbonated compounds in different beverages like soft drinks, fruit juices deserves great attention because of its toxic and carcinogenic effects on  human beings. We report on the detection and purification of those substances with the help of HPLC(High Performance  Liquid Chromatography).According to the migration rate, stationary phase and mobile phase, retention time we can extract the desire compounds. Depending upon the solvent and sample we can detect the compounds with  the  help  of the detector.The chromatogram will be  displayed and it can be viewed in the PC with the help of  Osiris  software. Compounds like Caffeine, Aspartame, Neotame, Saccharin, Maltodextrin, sucrose, fructose etc can be detected and purified. Detection and purification takes place in the column of HPLC where the process called adsorption takes place. Retention time can be calculated by the total time taken of a component that spends  in both mobile phase and stationary phase. It is always expressed in minutes


2010 ◽  
Vol 3 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Sophi Damayanti ◽  
Slamet Ibrahim ◽  
Kurnia Firman ◽  
Daryono H Tjahjono

Analytical method for the determination of paracetamol and ibuprofene mixtures has been developed by High Performance Liquid Chromatography using C-18 column and acetinitrile - phosphate buffer pH = 4.5 (75:25) containing 0.075% sodium hexanesulfunate as a mobile phase. The detector was set at 215 nm. Using such conditions, retention time for paracetamol and ibuprofen was 4.89 and 7.11 min, respectively. The recovery for paracetamol and ibuprofen was found to be 101.07± 0.73% and 102.02 ± 1.58%, respectively. The detector limits of the method was 1.30 and 1.60 μg/mL with the relative standard deviation (RSD) 0.74 and 1.52% for paracetamol and ibuprofen, respectively.   Keywords: paracetamol, ibuprofen, multi-component, validation, HPLC.


2020 ◽  
Vol 11 (02) ◽  
pp. 296-302
Author(s):  
Aseem Kumar ◽  
Anil Kumar Sharma ◽  
Rohit Dutt

The present work demonstrates a simple, rapid, precise, specific, and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method for analyzing glimepiride in pure and tablet forms. The present method was developed using a C18 column 150 × 4.6 mm, with 5 μm, and packing L1 maintained at a temperature of 30°C. The mobile phase was prepared by dissolving 0.5 gram of monobasic sodium phosphate in 500 mL of distilled water, pH of the solution adjusted to 2.1 to 2.7 with 10% phosphoric acid, and added 500 mL of acetonitrile. The mobile phase was pumped in the highperformance liquid chromatography (HPLC) system at a flow rate of 1 mL/min, and separation was carried out at 228 nm, using an ultraviolet (UV) detector. The chromatographic separation was achieved with peak retention time (RT) at about 9.30 minutes, and the method was found to be linear over a concentration range of 40 to 140 μg/mL. The specificity of the method represented no interference of the excipients during the analysis, and stability testing after 24 hours also showed that the method is suitable and specific. The accuracy was between 99.93 to 99.96%, with limit of detection (LOD) and limit of quantitation (LOQ) being 0.354 μg/mL, 1.18 μg/mL, respectively. Satisfactory results were found for precision and robustness parameters during the development and validation stage for the analytical method. The proposed method was also adopted for the analysis of glimepiride tablets to improve the overall quality control. Using this method, symmetric peak shape was obtained with reasonable retention time. The retention time of glimepiride for six repetitions is 9.3 ± 0.1 minutes; the run time is 21 minutes. The proposed RP-HPLC method is a modification of the United States Pharmacopeia (USP) method, and it was found to be valid for glimepiride within concentration ranges 40 to 140 μg/mL, using C18 analytical columns, and isocratic elution with UV detection, and at 1 mL/min of flow rate.


Sign in / Sign up

Export Citation Format

Share Document