scholarly journals DETECTION AND PURIFICATION OF HARMFUL COMPOUNDS IN BEVERAGES USING HPLC

2016 ◽  
Vol 12 (20) ◽  
pp. 5215-5217 ◽  
Author(s):  
Rukkumani V ◽  
Saravanakumar M

The presence of harmful compounds like caffeine and carbonated compounds in different beverages like soft drinks, fruit juices deserves great attention because of its toxic and carcinogenic effects on  human beings. We report on the detection and purification of those substances with the help of HPLC(High Performance  Liquid Chromatography).According to the migration rate, stationary phase and mobile phase, retention time we can extract the desire compounds. Depending upon the solvent and sample we can detect the compounds with  the  help  of the detector.The chromatogram will be  displayed and it can be viewed in the PC with the help of  Osiris  software. Compounds like Caffeine, Aspartame, Neotame, Saccharin, Maltodextrin, sucrose, fructose etc can be detected and purified. Detection and purification takes place in the column of HPLC where the process called adsorption takes place. Retention time can be calculated by the total time taken of a component that spends  in both mobile phase and stationary phase. It is always expressed in minutes

2010 ◽  
Vol 3 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Sophi Damayanti ◽  
Slamet Ibrahim ◽  
Kurnia Firman ◽  
Daryono H Tjahjono

Analytical method for the determination of paracetamol and ibuprofene mixtures has been developed by High Performance Liquid Chromatography using C-18 column and acetinitrile - phosphate buffer pH = 4.5 (75:25) containing 0.075% sodium hexanesulfunate as a mobile phase. The detector was set at 215 nm. Using such conditions, retention time for paracetamol and ibuprofen was 4.89 and 7.11 min, respectively. The recovery for paracetamol and ibuprofen was found to be 101.07± 0.73% and 102.02 ± 1.58%, respectively. The detector limits of the method was 1.30 and 1.60 μg/mL with the relative standard deviation (RSD) 0.74 and 1.52% for paracetamol and ibuprofen, respectively.   Keywords: paracetamol, ibuprofen, multi-component, validation, HPLC.


2020 ◽  
Vol 11 (02) ◽  
pp. 296-302
Author(s):  
Aseem Kumar ◽  
Anil Kumar Sharma ◽  
Rohit Dutt

The present work demonstrates a simple, rapid, precise, specific, and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method for analyzing glimepiride in pure and tablet forms. The present method was developed using a C18 column 150 × 4.6 mm, with 5 μm, and packing L1 maintained at a temperature of 30°C. The mobile phase was prepared by dissolving 0.5 gram of monobasic sodium phosphate in 500 mL of distilled water, pH of the solution adjusted to 2.1 to 2.7 with 10% phosphoric acid, and added 500 mL of acetonitrile. The mobile phase was pumped in the highperformance liquid chromatography (HPLC) system at a flow rate of 1 mL/min, and separation was carried out at 228 nm, using an ultraviolet (UV) detector. The chromatographic separation was achieved with peak retention time (RT) at about 9.30 minutes, and the method was found to be linear over a concentration range of 40 to 140 μg/mL. The specificity of the method represented no interference of the excipients during the analysis, and stability testing after 24 hours also showed that the method is suitable and specific. The accuracy was between 99.93 to 99.96%, with limit of detection (LOD) and limit of quantitation (LOQ) being 0.354 μg/mL, 1.18 μg/mL, respectively. Satisfactory results were found for precision and robustness parameters during the development and validation stage for the analytical method. The proposed method was also adopted for the analysis of glimepiride tablets to improve the overall quality control. Using this method, symmetric peak shape was obtained with reasonable retention time. The retention time of glimepiride for six repetitions is 9.3 ± 0.1 minutes; the run time is 21 minutes. The proposed RP-HPLC method is a modification of the United States Pharmacopeia (USP) method, and it was found to be valid for glimepiride within concentration ranges 40 to 140 μg/mL, using C18 analytical columns, and isocratic elution with UV detection, and at 1 mL/min of flow rate.


2020 ◽  
Vol 32 (3) ◽  
pp. 157-165
Author(s):  
Ghulam Abbas ◽  
Malik Saadullah ◽  
Akhtar Rasul ◽  
Shahid Shah ◽  
Sajid Mehmood Khan ◽  
...  

A sensitive, inexpensive high-performance liquid chromatography–ultraviolet detection (HPLC–UV) method has been developed and validated for the simultaneous monitoring of pantoprazole sodium sesquihydrate (PSS) and domperidone maleate (DM) in rabbit plasma on a C18 column with UV detection at 285 nm. Box–Behnken design was used with 3 independent variables, namely, flow rate (X1), mobile phase composition (X2), and phosphate buffer pH (X3), which were used to design mathematical models. Response surface design was applied to optimize the dependent variables, i.e., retention time (Y1 and Y2) and percentage recoveries (Y3 and Y4) of PSS and DM. The method was sensitive and reproducible over 1.562 to 25 μg/mL. The effect of the quadratic outcome of flow rate, mobile phase composition, and buffer pH on retention time (p ˂ 0.001) and percentage recoveries of PSS and DM (p = 0.0016) were significant. The regression values obtained from analytical curve of PSS and DM were 0.999 and 0.9994, respectively. The percentage recoveries of PSS and DM were ranged from 94.5 to 100.41% and 94.77 to 100.31%, respectively. The developed method was applied for studying the pharmacokinetics of PSS and DM. The Cmax of test and reference formulations were 48.06 ± 0.347 μg/mL and 46.31 ± 0.398 μg/mL for PSS, and 15.11 ± 1.608 μg/mL and 12.06 ± 1.234 μg/mL for DM, respectively.


2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Siti Chusnul Cholifah ◽  
Mochamad Lazuardi ◽  
Dadik Rahardjo ◽  
Lilik Maslachah ◽  
Mohammad Sukmanadi ◽  
...  

The aim of this research was to determine the level of stability of Megestrole acetate-retention time in storage period for six, eight and 12 hours using High Performance Liquid Chromatography (HPLC). The research method used posttest-only control group design by using three treatments and six repetitions. The three repetitions consist into six hours, eight hours and 12 hours. The data were obtained analyzed by Summery Independent T-Test with SPSS 24 for windows. The result showed six hours retention time of Megestrole acetate is stable and eight hours treatment and 12 hours treatment are not stable there is one unstable point of 12 hours treatment that indicates the substance is break down. Based on those result, it could be concluded that the storage time of Megestrole acetate in Eluent Mobile Phase began to show unstable at eight hours of storage.


Sign in / Sign up

Export Citation Format

Share Document