Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale

CIRP Annals ◽  
2021 ◽  
Author(s):  
Volodymyr Bushlya ◽  
Filip Lenrick ◽  
Axel Bjerke ◽  
Hisham Aboulfadl ◽  
Mattias Thuvander ◽  
...  
2013 ◽  
Vol 581 ◽  
pp. 26-31
Author(s):  
Ivan Mrkvica ◽  
Miroslav Janoš

This article focuses on the analysis of tool wear mechanisms in milling of Inconel 718. Inconel 718 is tough and highly temperature resistive material, which is used due to its excellent properties especially in aggressive corrosive medium. Machining of this alloy is still complicated. The feasibility of four inserts tested for milling of Inconel 718 has been shown in the work. Different cutting speeds and feeds were used. Experimental tests were performed in order to analyze wear patterns evolution. It was found influence of cutting conditions and type if insert in tool wear mode.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


2017 ◽  
Vol 105 ◽  
pp. 264-273 ◽  
Author(s):  
S. Sartori ◽  
L. Moro ◽  
A. Ghiotti ◽  
S. Bruschi

Author(s):  
Mohamed Konneh ◽  
Mst. Nasima Bagum ◽  
Mohammad Yeakub Ali ◽  
Tasnim Firdaus Bt. Mohamed Arif

2013 ◽  
Vol 459 ◽  
pp. 424-427 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda

The content of this article also focuses on the analysis of the tool life of screw drills. This paper presents the conclusions of tests on a stainless steel DIN 1.4301.The results of the article are conclusions for working theory and practice for drilling of stainless steels. Based on the cutting tests, cutting speeds of 30 to 60 m/min, feed rate of 0.04to0.1 mm and screw drill carbide monolite.


2010 ◽  
Vol 24 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Abdullah Yassin ◽  
Takashi Ueda ◽  
Tatsuaki Furumoto ◽  
Mohd Sanusi Abdul Aziz ◽  
Ryutaro Tanaka ◽  
...  

2011 ◽  
Vol 21 (6) ◽  
pp. 797-808 ◽  
Author(s):  
Patricia Muñoz-Escalona ◽  
Nayarit Díaz ◽  
Zulay Cassier

Sign in / Sign up

Export Citation Format

Share Document