On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys

2017 ◽  
Vol 105 ◽  
pp. 264-273 ◽  
Author(s):  
S. Sartori ◽  
L. Moro ◽  
A. Ghiotti ◽  
S. Bruschi
2013 ◽  
Vol 651 ◽  
pp. 338-343 ◽  
Author(s):  
Alokesh Pramanik ◽  
M.N. Islam ◽  
Animesh Basak ◽  
Guy Littlefair

This paper investigates the machining mechanism of titanium alloys and analyses those understandings systematically to give a solid understanding with latest developments on machining of titanium alloys. The chip formation mechanism and wear of different cutting tools have been analyzed thoroughly based on the available literature. It is found that the deformation mechanism during machining of titanium alloys is complex and it takes place through several processes. Abrasion, attrition, diffusion–dissolution, thermal crack and plastic deformation are main tool wear mechanisms.


CIRP Annals ◽  
2021 ◽  
Author(s):  
Volodymyr Bushlya ◽  
Filip Lenrick ◽  
Axel Bjerke ◽  
Hisham Aboulfadl ◽  
Mattias Thuvander ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


Author(s):  
Mohamed Konneh ◽  
Mst. Nasima Bagum ◽  
Mohammad Yeakub Ali ◽  
Tasnim Firdaus Bt. Mohamed Arif

2013 ◽  
Vol 459 ◽  
pp. 424-427 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda

The content of this article also focuses on the analysis of the tool life of screw drills. This paper presents the conclusions of tests on a stainless steel DIN 1.4301.The results of the article are conclusions for working theory and practice for drilling of stainless steels. Based on the cutting tests, cutting speeds of 30 to 60 m/min, feed rate of 0.04to0.1 mm and screw drill carbide monolite.


2010 ◽  
Vol 24 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Abdullah Yassin ◽  
Takashi Ueda ◽  
Tatsuaki Furumoto ◽  
Mohd Sanusi Abdul Aziz ◽  
Ryutaro Tanaka ◽  
...  

2011 ◽  
Vol 21 (6) ◽  
pp. 797-808 ◽  
Author(s):  
Patricia Muñoz-Escalona ◽  
Nayarit Díaz ◽  
Zulay Cassier

Sign in / Sign up

Export Citation Format

Share Document