Analysis of long term catalytic performance for isobutane alkylation catalyzed by NMA–AlCl3 based ionic liquid analog

2019 ◽  
Vol 27 (8) ◽  
pp. 1857-1862 ◽  
Author(s):  
Pengcheng Hu ◽  
Zhitao Wu ◽  
Junlin Wang ◽  
Yuqing Huang ◽  
Yang Deng ◽  
...  
2011 ◽  
Vol 32 (4) ◽  
pp. 693-698
Author(s):  
Xuewei CHEN ◽  
Hongbing SONG ◽  
Xuehui LI ◽  
Furong WANG ◽  
Yu QIAN

2021 ◽  
Vol 328 ◽  
pp. 115411
Author(s):  
Guoqing Wu ◽  
Ying Liu ◽  
Guangliang Liu ◽  
Ruisheng Hu ◽  
Guanjun Gao

2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


2018 ◽  
Vol 6 (4) ◽  
pp. 5024-5031 ◽  
Author(s):  
Muhammad Irfan ◽  
Muhammad Moniruzzaman ◽  
Tausif Ahmad ◽  
Ola Yahia Osman ◽  
Pradip Chandra Mandal ◽  
...  

2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


2020 ◽  
Vol 8 (37) ◽  
pp. 12984-12992
Author(s):  
Awais Siddique Saleemi ◽  
Muhammad Hafeez ◽  
Aqsa Munawar ◽  
Naeem Akhtar ◽  
Waseem Abbas ◽  
...  

Arsenic(iii) poisoning may lead to neurological disorders, heart diseases or carcinogenic effects due to long-term exposure.


2013 ◽  
Vol 25 (8) ◽  
pp. 4523-4526
Author(s):  
Jianwei Lian ◽  
Jianling Xia ◽  
Kun Huang ◽  
Mei Li

2020 ◽  
Vol 10 (5) ◽  
pp. 1752 ◽  
Author(s):  
Felipe Sanchez ◽  
Ludovica Bocelli ◽  
Davide Motta ◽  
Alberto Villa ◽  
Stefania Albonetti ◽  
...  

Hydrogen is one of the most promising energy carriers for the production of electricity based on fuel cell hydrogen technology. Recently, hydrogen storage chemicals, such as formic acid, have been proposed to be part of the long-term solution towards hydrogen economy for the future of our planet. Herein we report the synthesis of preformed Pd nanoparticles using colloidal methodology varying a range of specific experimental parameters, such as the amount of the stabiliser and reducing agent, nature of support and Pd loading of the support. The aforementioned parameters have shown to affect mean Pd particle size, Pd oxidation, atomic content of Pd on the surface as well as on the catalytic performance towards formic acid decomposition. Reusability studies were carried out using the most active monometallic Pd material with a small loss of activity after five uses. The catalytic performance based on the Au–Pd atomic ratio was evaluated and the optimum catalytic performance was found to be with the Au/Pd atomic ratio of 1/3, indicating that the presence of a small amount of Pd is essential to promote significantly Au activity for the liquid phase decomposition of formic acid. Thorough characterisation has been carried out by means of XPS, SEM-EDX, TEM and BET. The observed catalytic performance is discussed in terms of the structure/morphology and composition of the supported Pd and Au–Pd nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document