Effect of Copper nanoparticles on thermal behavior of two-phase Argon- Copper nanofluid flow in rough nanochannels with focusing on the interface properties and heat transfer using molecular dynamics simulation

Author(s):  
Shabnam Ghahremanian ◽  
Abbas Abbassi ◽  
Zohreh Mansoori ◽  
Davood Toghraie
2007 ◽  
Vol 1022 ◽  
Author(s):  
Suranjan Sarkar ◽  
R. Panneer Selvam

AbstractA model nanofluid system of copper nanoparticles in argon base fluid was successfully modeled by molecular dynamics simulation. The interatomic interactions between solid copper nanoparticles, base liquid argon atoms and between solid copper and liquid argon were modeled by Lennard Jones potential with appropriate parameters. The effective thermal conductivity of the nanofluids was calculated through Green Kubo method in equilibrium molecular dynamics simulation for varying nanoparticle concentrations and for varying system temperatures. Thermal conductivity of the basefluid was also calculated for comparison. This study showed that effective thermal conductivity of nanofluids is much higher than that of the base fluid and found to increase with increased nanoparticle concentration and system temperature. Through molecular dynamics calculation of mean square displacements for basefluid, nanofluid and its components, we suggested that the increased movement of liquid atoms in the presence of nanoparticle was probable mechanism for higher thermal conductivity of nanofluids.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Mohammad Bagheri Motlagh ◽  
Mohammad Kalteh

Abstract In this paper, molecular dynamics simulation is used to investigate the effect of copper and argon nanochannels size on the thermal conductivity of argon. Thermal conductivity is calculated by nonequilibrium molecular dynamics (NEMD) simulation. Simulations are performed for different distances between the walls. Results for both copper and argon walls are investigated individually. Results show that the existence of argon walls has little effect on the thermal conductivity. However, the amount of it for the argon confined between the copper walls is affected by the distance between the two walls. In the same way, the effect of wall roughness on the thermal conductivity is investigated, which shows that roughness is effective only for low distances between the walls. Also, the thermal conductivity of argon under Poiseuille flow in a nanochannel is studied. The results indicate that by increasing the driving force, the thermal conductivity increases and the increase ratio is higher for larger forces.


Sign in / Sign up

Export Citation Format

Share Document