scholarly journals Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite

2018 ◽  
Vol 155 ◽  
pp. 37-49 ◽  
Author(s):  
Agnieszka Węgrzyn ◽  
Wojciech Stawiński ◽  
Olga Freitas ◽  
Kamila Komędera ◽  
Artur Błachowski ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


1996 ◽  
Vol 16 (3) ◽  
pp. 839-846 ◽  
Author(s):  
E M Newton ◽  
U Knauf ◽  
M Green ◽  
R E Kingston

Heat shock factor (HSF) activates transcription in response to cellular stress. Human HSF1 has a central regulatory domain which can repress the activity of its activation domains at the control temperature and render them heat shock inducible. To determine whether the regulatory domain works in tandem with specific features of the HSF1 transcriptional activation domains, we first used deletion and point mutagenesis to define these activation domains. One of the activation domains can be reduced to just 20 amino acids. A GAL4 fusion protein containing the HSF 1 regulatory domain and this 20-amino-acid activation domain is repressed at the control temperature but potently activates transcription in response to heat shock. No specific amino acids in this activation domain are required for response to the regulatory domain; in particular, none of the potentially phosphorylated serine and threonine residues are required for heat induction, implying that heat-induced phosphorylation of the transcriptional activation domains is not required for induction. The regulatory domain is able to confer heat responsiveness to an otherwise completely heterologous chimeric activator that contains a portion of the VP16 activation domain, suggesting that the regulatory domain can sense heat in the absence of other portions of HSF1.


1992 ◽  
Vol 49 (5) ◽  
pp. 239-240
Author(s):  
B. I. Kislov ◽  
L. V. Vodop'yanova

1997 ◽  
Vol 41 (9) ◽  
pp. 1904-1909 ◽  
Author(s):  
V de Crécy-Lagard ◽  
W Saurin ◽  
D Thibaut ◽  
P Gil ◽  
L Naudin ◽  
...  

Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations.


1965 ◽  
Vol 97 (1) ◽  
pp. 112-124 ◽  
Author(s):  
PJ Peterson ◽  
L Fowden

1. A prolyl-s-RNA synthetase (prolyl-transfer RNA synthetase) has been purified about 250-fold from seed of Phaseolus aureus (mung bean), a species not producing azetidine-2-carboxylic acid, and more than 10-fold from rhizome apices of Polygonatum multiflorum, a liliaceous species containing azetidine-2-carboxylic acid. The latter enzyme was unstable during ammonium sulphate fractionation. 2. The enzymes exhibited different substrate specificities towards the analogue. That from Phaseolus, when assayed by the ATP-PP(i) exchange, showed azetidine-2-carboxylic acid activation at about one-third the rate with proline. Both labelled imino acids gave rise to a labelled aminoacyl-s-RNA. The enzyme from Polygonatum, however, activated only proline. 3. The enzyme from Polygonatum also formed a labelled prolyl-s-RNA with Phaseolus s-RNA but at a lower rate than when the Phaseolus enzyme was used. No reaction occurred when the Phaseolus enzyme was coupled with Polygonatum s-RNA, and only a very slight one was observed when both enzyme and s-RNA came from Polygonatum. 4. Protein preparations from seeds of Pisum sativum, another species not producing azetidine-2-carboxylic acid, also activated the analogue in addition to proline, whereas those from rhizome and seeds of Convallaria, the species from which the analogue was originally isolated, failed to activate it. However, a liliaceous species not producing the analogue, Asparagus officinalis, activated it. 5. Of the other proline analogues investigated, only 3,4-dehydro-dl-proline and l-thiazolidine-4-carboxylic acid were active with the enzyme preparation from Phaseolus. 6. pH optima of 7.9 and 8.4 were established for the enzymes from Phaseolus and Polygonatum respectively. 7. The Phaseolus enzyme was specific for ATP and PP(i). Mn(2+) partially replaced the requirement for Mg(2+) as cofactor. Preincubation with p-chloromercuribenzoate at a concentration of 0.5mm or higher produced over 99% inhibition of the Phaseolus enzyme. One-half the enzymic activity was destroyed by preheating for 5min. at 62 degrees in tris-hydrochloric acid buffer, pH7.9. 8. All experimental evidence supports the hypothesis that azetidine-2-carboxylic acid and proline are activated by the same enzyme in Phaseolus preparations, whereas the analogue was inactive in all Polygonatum preparations. The possible nature of this different substrate behaviour is discussed.


Clay Minerals ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 633-643 ◽  
Author(s):  
F. Kooli ◽  
W. Jones

AbstractA natural saponite was acid activated at room temperature or 90°C with different acid/clay ratios and the products were characterized by powder X-ray diffraction, infrared spectroscopy and thermogravimetry. The leaching of Mg from the octahedral sheets is enhanced by an increase in the acid/clay ratio and by an increase in temperature of activation. Textural properties are reported, and it appears that they are strongly correlated to the presence of a noncrystalline silica phase which is formed during the acid activation process. The desorption of cyclohexylamine indicates that for samples activated at 90°C the number of acid sites in the acidactivated saponites decreases following severe acid treatment. Infrared spectroscopy of adsorbed pyridine on samples after calcination at 500°C suggests that acid activation at 90°C produces a single type of Bronsted site but two types of Lewis sites whereas activation at room temperature results in only one type of Lewis site in addition to a Brønsted site. The two Lewis sites are suggested to originate from residual Al in the clay structure and to AI exsolved from the layers during activation. The dehydration of pentan-1-ol has been used as a further probe to measure acidity by monitoring the degree of conversion and selectivity for the different samples.


Sign in / Sign up

Export Citation Format

Share Document