Characterization and catalytic properties of a saponite clay modified by acid activation
AbstractA natural saponite was acid activated at room temperature or 90°C with different acid/clay ratios and the products were characterized by powder X-ray diffraction, infrared spectroscopy and thermogravimetry. The leaching of Mg from the octahedral sheets is enhanced by an increase in the acid/clay ratio and by an increase in temperature of activation. Textural properties are reported, and it appears that they are strongly correlated to the presence of a noncrystalline silica phase which is formed during the acid activation process. The desorption of cyclohexylamine indicates that for samples activated at 90°C the number of acid sites in the acidactivated saponites decreases following severe acid treatment. Infrared spectroscopy of adsorbed pyridine on samples after calcination at 500°C suggests that acid activation at 90°C produces a single type of Bronsted site but two types of Lewis sites whereas activation at room temperature results in only one type of Lewis site in addition to a Brønsted site. The two Lewis sites are suggested to originate from residual Al in the clay structure and to AI exsolved from the layers during activation. The dehydration of pentan-1-ol has been used as a further probe to measure acidity by monitoring the degree of conversion and selectivity for the different samples.