Preparation, characterization and application of geopolymer-based tubular inorganic membrane

2021 ◽  
Vol 203 ◽  
pp. 106001
Author(s):  
Zhengwei Zhang ◽  
Haoyang Yu ◽  
Mengxue Xu ◽  
Xuemin Cui
Keyword(s):  
2014 ◽  
Vol 29 (2) ◽  
pp. 137-142
Author(s):  
Jiao-Zhu YU ◽  
Lin LI ◽  
Xin JIN ◽  
Ling-Hua DING ◽  
Tong-Hua WANG

2000 ◽  
Vol 41 (10-11) ◽  
pp. 173-180 ◽  
Author(s):  
L. Vera ◽  
S. Delgado ◽  
S. Elmaleh

A novel technique was tested for reducing tubular mineral membrane fouling by injecting gas into a cross-flow stream. The injected gas is thought to form complex hydrodynamic conditions inside the microfiltration module, which increase the wall shear stress, preventing the membrane fouling and enhancing the microfiltration mass transfer. The experimental study was carried out with biologically treated wastewater filtered through a tubular inorganic membrane (Carbosep M14). The flux, monotonously increasing with gas velocity, was more than tripled. New dimensionless quantities of shear stress number and resistance number were developed by generalisation of the dimensional analysis already carried out for the steady state flux of classical unsparged cross-flow filtration. A unique formalism allowed then interpreting the experimental results of both classical diphasic filtration and sparged filtration. The main limiting mass transport process was due to the solid content.


1970 ◽  
Vol 5 (2) ◽  
Author(s):  
M.R Othman, H. Mukhtar ◽  
A.L. Ahmad

An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.


Author(s):  
L. K. Doraiswamy

Like zeolites that combine shape selectivity with catalysis, membranes combine separation with catalysis to enhance reaction rates. The dual functionality of zeolites derives from the nature of the catalytic material, whereas that of membranes derives from the nature of the reactor material. The catalyst in the membrane reactor can be a part of the membrane itself or be external to it (i.e., placed inside the membrane tube). The chief property of a membrane is its ability for selective permeation or permselectivity with respect to certain compounds. Organic membrane reactions are best carried out in reactors made of inorganic membranes, such as from palladium, alumina, or ceramics. Good descriptions of these reactions and the membranes used are available in many reviews, for example, Gryaznov (1986, 1992), Stoukides (1988), Armor (1989), Govind and Ilias (1989), Bhave (1991), Zaspalis and Burggraaf (1991), Hsieh (1989, 1991), Shu et al. (1991), Shieh (1991), Gellings and Bouwmeister (1992), Tsotsis et al. (1993b), Harold et al. (1994), Saracco and Specchia (1994), Sanchez and Tsotsis (1996). A recent trend has been to develop polymeric-inorganic composite type membranes formed by the deposition of a thin dense polymeric film on an inorganic support (Kita et al., 1987; Rezac and Koros, 1994, 1995; Zhu et al., 1996). Another class of membranes under development for organic synthesis is the liquid membrane (Marr and Kopp, 1982; Eyal and Bressler, 1993). The permselective barrier in this type of membrane is a liquid phase, often containing a dissolved “carrier” or “transporter” that selectively reacts with a specific permeate to enhance its transport rate through the membrane. Our main concern in this chapter will be with inorganic membrane reactors. We commence our treatment with an introduction to the exploitable features of membrane reactors (with no attempt to describe membrane synthesis). Then we describe the main variations in design and operating mode of these reactors, develop performance equations for the more important designs, and compare the performances of some important designs with those of the traditional mixed- and plug-flow reactors. Finally, we present a summary of the applications of membrane reactors in enhancing the rates of organic reactions.


Sign in / Sign up

Export Citation Format

Share Document