Role of Bile Acids and the Biliary HCO 3 − Umbrella in the Pathogenesis of Primary Biliary Cholangitis

2018 ◽  
Vol 22 (3) ◽  
pp. 457-479 ◽  
Author(s):  
Jorrit van Niekerk ◽  
Remco Kersten ◽  
Ulrich Beuers
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhanyi Li ◽  
Yu Liu ◽  
Fangji Yang ◽  
Jiahui Pang ◽  
Yuankai Wu ◽  
...  

Background. Primary biliary cholangitis-autoimmune hepatitis overlap syndrome (PBC-AIH OS), which exhibits features between autoimmune hepatitis and cholestasis, is a common condition and usually shows a progressive course toward cirrhosis and liver failure without adequate treatment. Synthesis of bile acids (BAs) plays an important role in liver injury in cholestasis, and the process is regulated by fibroblast growth factor 19 (FGF19). The overall role of circulating FGF19 in BA synthesis and PBC-AIH OS requires further investigation. Methods. We analyzed BA synthesis and correlated clinical parameters with serum BAs and FGF19 in 35 patients with PBC-AIH OS. Serum concentrations of 7alpha-hydroxycholest-4-en-3-one (C4) were used to quantify the synthesis of BA directly. Results. Serum FGF19 levels were higher, while C4 levels were substantially lower in PBC-AIH OS patients than those in healthy controls. Circulating FGF19 levels strongly correlated with C4 (r=−0.695, p<0.0001), direct bilirubin (r=0.598, p=0.0001), and total bile acids (r=0.595, p=0.002). Moreover, circulating FGF19 levels strongly correlated with the model for end-stage liver disease score (r=0.574, p=0.0005) and Mayo risk score (r=0.578, p=0.001). Conclusions. Serum FGF19 is significantly increased in patients with PBC-AIH OS, while BA synthesis is suppressed. Circulating FGF19 primarily controls the regulation of BA synthesis in response to cholestasis and under cholestatic conditions. Therefore, modulation of circulating FGF19 could provide a promising targeted therapy for patients with PBC-AIH OS.


Author(s):  
Nehal El Koofy ◽  
Noha Yassin ◽  
Sawsan Okasha ◽  
Hany William ◽  
Wafaa Elakel ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 766
Author(s):  
David F. Woods ◽  
Stephanie Flynn ◽  
Jose A. Caparrós-Martín ◽  
Stephen M. Stick ◽  
F. Jerry Reen ◽  
...  

The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.


2021 ◽  
Vol 53 ◽  
pp. S5
Author(s):  
A. Gerussi ◽  
D. Verda ◽  
D.P. Bernasconi ◽  
M. Carbone ◽  
A. Komori ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 767-768
Author(s):  
Vijay Varma ◽  
Youjin Wang ◽  
Yang An ◽  
Sudhir Varma ◽  
Murat Bilgel ◽  
...  

Abstract While Alzheimer’s disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association is unclear. Using a novel, 3-step study design we examined the role of cholesterol catabolism in dementia by testing whether 1) the synthesis of the primary cholesterol breakdown products (bile acids (BA)) were associated with neuroimaging markers of dementia; 2) pharmacological modulation of BAs alters dementia risk; and 3) brain BA concentrations and gene expression were associated with AD. We found that higher serum concentrations of BAs are associated with lower brain amyloid deposition, slower WML accumulation, and slower brain atrophy in males. Opposite effects were observed in females. Modulation of BA levels alters risk of incident VaD in males. Altered brain BA signaling at the metabolite and gene expression levels occurs in AD. Dysregulation of peripheral cholesterol catabolism and BA synthesis may impact dementia pathogenesis through signaling pathways in the brain.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1104
Author(s):  
Cong Xie ◽  
Weikun Huang ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
Michael Horowitz ◽  
...  

Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.


1974 ◽  
Vol 66 (4) ◽  
pp. 548-555 ◽  
Author(s):  
B. Hadorn ◽  
J. Hess ◽  
V. Troesch ◽  
W. Verhaage ◽  
H. Götze ◽  
...  

1983 ◽  
pp. 105-118
Author(s):  
Harvey L. Sharp ◽  
Deborah K. Freese ◽  
Russell F. Hanson
Keyword(s):  

2020 ◽  
Vol 46 (1) ◽  
pp. 83-88
Author(s):  
N. B. Gubergrits ◽  
N.V. Byelyayeva ◽  
T. L. Mozhyna ◽  
G. M. Lukashevich ◽  
P. G. Fomenko

After the discovery of the method of ursodeoxycholic acid’s (UDCA) synthesis and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began in the world. This drug, which has pleiotropic effect (choleretic, cytoprotective, immunomodulatory, antiapoptic, litholytic, hypocholesterolemic), has proven its effectiveness in the treatment various diseases: primary biliary cholangitis, intrahepatic cholestasis of pregnancy, gallstone disease. Being a tertiary bile acid, UDCA stimulates bile acid synthesis by reducing the circulating fibroblast growth factor 19 and inhibiting the activation of the farnesoid X-receptor (FXR), which leads to the induction of cholesterol-7α-hydroxylase, a key enzyme in the synthesis of bile acid de novo, mediating the conversion of cholesterol into bile acids. Changes in the formation of bile acids and cholesterol while taking UDCA intake is accompanied by activation of the main enzyme of cholesterol synthesis - 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under the influence of UDCA the activity of stearoyl-Coa desaturase (SCD) in visceral white adipose tissue increases. According to studies conducted in 2019, UDCA improves lipid metabolism by regulating the activity of the ACT/mTOR signaling pathway, reduces the synthesis of cholesterol, decreases the fractional synthesis rate of cholesterol and the fractional synthesis rate of triglycerides. It has been proved that UDCA is accompanied by a decrease in the level of total cholesterol and low density lipoprotein cholesterol.


Sign in / Sign up

Export Citation Format

Share Document