Lower-limb joint reaction forces and moments during modified cycling in healthy controls and individuals with knee osteoarthritis

2020 ◽  
Vol 71 ◽  
pp. 167-175 ◽  
Author(s):  
Rachel L. Thompson ◽  
Jacob K. Gardner ◽  
Songning Zhang ◽  
Jeffrey A. Reinbolt
2021 ◽  
Author(s):  
Luca Modenese ◽  
Martina Barzan ◽  
Christopher P Carty

AbstractBackgroundMusculoskeletal (MSK) models based on literature data are meant to represent a generic anatomy and are a popular tool employed by biomechanists to estimate the internal loads occurring in the lower limb joints, such as joint reaction forces (JRFs). However, since these models are normally just linearly scaled to an individual’s anthropometry, it is unclear how their estimations would be affected by the personalization of key features of the MSK anatomy, one of which is the femoral anteversion angle.Research QuestionHow are the lower limb JRF magnitudes computed through a generic MSK model affected by changes in the femoral anteversion?MethodsWe developed a bone-deformation tool in MATLAB (https://simtk.org/projects/bone_deformity) and used it to create a set of seven OpenSim models spanning from 2° femoral retroversion to 40° anteversion. We used these models to simulate the gait of an elderly individual with an instrumented prosthesis implanted at their knee joint (5th Grand Challenge dataset) and quantified both the changes in JRFs magnitude due to varying the skeletal anatomy and their accuracy against the correspondent in vivo measurements at the knee joint.ResultsHip and knee JRF magnitudes were affected by the femoral anteversion with variations from the unmodified generic model up to 11.7±5.5% at the hip and 42.6±31.0% at the knee joint. The ankle joint was unaffected by the femoral geometry. The MSK models providing the most accurate knee JRFs (root mean squared error: 0.370±0.069 body weight, coefficient of determination: 0.764±0.104, largest peak error: 0.36±0.16 body weight) were those with the femoral anteversion angle closer to that measured on the segmented bone of the individual.SignificanceFemoral anteversion substantially affects hip and knee JRFs estimated with generic MSK models, suggesting that personalizing key MSK anatomical features might be necessary for accurate estimation of JRFs with these models.


1990 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
G. R. B. Hurley ◽  
R. McKenney ◽  
M. Robinson ◽  
M. Zadravec ◽  
M. R. Pierrynowski

Very little quantitative biomechanical research has been carried out evaluating issues relevant to prosthetic management. The literature available suggests that amputees may demonstrate an asymmetrical gait pattern. Furthermore, studies suggest that the forces occurring during amputee gait may be unequally distributed between the contralateral and prosthetic lower limbs/This study investigates the role of the contralateral limb in amputee gait by determining lower limb joint reaction forces and symmetry of motion in an amputee and non-amputee population. Seven adult below-knee amputees and four non-amputees participated in the study. Testing involved collection of kinematic coordinate data employing a WATSMART video system and ground reaction force data using a Kistler force plate. The degree of lower limb symmetry was determined using bilateral angle-angle diagrams and a chain encoding technique. Ankle, knee and hip joint reaction forces were estimated in order to evaluate the forces acting across the joints of the amputee's contralateral limb. The amputees demonstrated a lesser degree of lower limb symmetry than the non-amputees. This asymmetrical movement was attributed to the inherent variability of the actions of the prosthetic lower limb. The forces acting across the joints of the contralateral limb were not significantly higher than that of the non-amputee. This suggests that, providing the adult amputee has a good prosthetic fit, there will not be increased forces across the joints of the contralateral limb and consequently no predisposition for the long-term wearer to develop premature degenerative arthritis.


2014 ◽  
Vol 30 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Yu-Jen Chen ◽  
Christopher M. Powers

The purpose of this study was to determine if persons with patellofemoral pain (PFP) exhibit differences in patellofemoral joint reaction forces (PFJRFs) during functional activities. Forty females (20 PFP, 20 controls) underwent two phases of data collection: (1) magnetic resonance imaging (MRI) and (2) biomechanical analysis during walking, running, stair ascent, and stair descent. A previously described three-dimensional model was used to estimate PFJRFs. Resultant PFJRFs and the orthogonal components were reported. The PFP group demonstrated lower peak resultant PFJRFs and posterior component and superior component of the PFJRFs compared with the control group across all conditions. However, the PFP group had a higher peak lateral component of the PFJRF in three out of the four conditions evaluated. The lower resultant PFJRFs suggested that individuals with PFP may employ strategies to minimize patellofemoral joint loading, but it did not result in diminished lateral forces acting on the patella.


Sign in / Sign up

Export Citation Format

Share Document