Nontraumatic brain parenchymal hemorrhage: The usual suspects and more

Author(s):  
Sathish Kumar Dundamadappa
Keyword(s):  
2021 ◽  
pp. 105424
Author(s):  
Anisa Dehghani ◽  
Thas Phisonkunkasem ◽  
Sinem Yilmaz Ozcan ◽  
Turgay Dalkara ◽  
Arn M.J.M. van den Maagdenberg ◽  
...  

2017 ◽  
Vol 381 ◽  
pp. 197
Author(s):  
K. Honjo ◽  
D. Nyenhuis ◽  
F. Gao ◽  
C. Scott ◽  
A. Ganda ◽  
...  

1994 ◽  
Vol 162 (2) ◽  
pp. 425-430 ◽  
Author(s):  
W T Yuh ◽  
H D Nguyen ◽  
F Gao ◽  
E T Tali ◽  
D J Fisher ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi171-vi171
Author(s):  
Timothy Sita ◽  
Lisa Hurley ◽  
Michael Drumm ◽  
Serena Tommasini-Ghelfi ◽  
Akanksha Mahajan ◽  
...  

Abstract PURPOSE Growing evidence indicates that the neurotransmitters dysregulated in psychiatric disorders are similarly dysregulated in glioblastoma (GBM) biology. GBM cells are dependent on bountiful neuronal glutamate, utilize elevated dopamine receptor expression to augment progression, and catabolize serotonin to drive proliferation and inhibit anti-tumor immunity. The clinical induction of seizure, known as electroconvulsive therapy (ECT), has been used by psychiatrists since the 1930s to correct these dysregulations and can additionally improve medication blood-brain barrier (BBB) penetrance. We hypothesized that seizure-induced changes in the glioma microenvironment occur with ECT, slowing tumor progression, increasing BBB permeability, and prolonging overall survival in glioma-bearing mice. METHODS C57BL6 mice were orthotopically injected with CT-2A-Luc mouse glioma cells. Mice were randomized to receive ECT via ear-clip electrodes or sham treatment daily up to five times per week. Intracranial progression was monitored via bioluminescent signal from CT-2A-Luc xenografts. BBB permeability was assessed by subjecting mice to ECT or sham treatment immediately following intravenous injection of sodium fluorescein. RESULTS Intracranial progression was maximally reduced in ECT-treated mice relative to sham-treated mice after 17 ECT treatments (ECT radiance 2.6 x 109 photons/second versus sham 4.7 x 109 photons/second, p=0.013), which was further confirmed by both decreased tumor weight and tumor size on histologic evaluation. This translated into an improvement in overall survival from median 29 days in sham-treated mice to 38 days in ECT-treated mice (p=0.0018). Mean seizure duration was 41.8 seconds and positively correlated with overall survival (Pearson coefficient r=0.63, p=0.028). Brain parenchymal uptake of sodium fluorescein was significantly higher in ECT-treated mice (mean relative increase in ECS to sham radiance of 1.47, p< 0.05). CONCLUSION Repeated ECT slows tumor progression and prolongs overall survival in C57BL6 mice bearing CT-2A-Luc xenografts. The BBB is compromised immediately following ECT. ECT merits further oncologic investigation as a potential therapeutic in GBM.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Peng Shi ◽  
Yunfan Lin ◽  
Qianqian Bi ◽  
Guo Cheng ◽  
Xiao Shen

Hypothalamic paraventricular nucleus (PVN) is a critical integrating region in controlling peripheral sympathetic tonicity. While the vast studies have unraveled the regulatory circuits affecting PVN pre-sympathetic neurons, local factors for maintaining the homeostasis of neuronal excitability are barely understood. In the present study we investigated the role of microglia, the primary resident immune cells of the CNS, in this context. By electrophysiological recording, we found that loss of resident microglia induced an increased firing frequency and attenuated outward potassium currents in the PVN pre-sympathetic neurons, tachycardia and impaired heart rate variability. Combining the transcriptomics analysis of the PVN microglia, we identified a releasable factor, which was dominantly expressed in microglia compared to other brain parenchymal cells. ICV infusion of the recombinant peptide restored potassium currents in the PVN pre-sympathetic neurons and autonomic function in microglia-depleted mice. In summary, our results provided a novel intrinsic regulatory mechanism by which microglia suppress neuronal over excitation in physiological condition.


Stroke ◽  
2017 ◽  
Vol 48 (8) ◽  
pp. 2301-2305 ◽  
Author(s):  
Romain Goulay ◽  
Julien Flament ◽  
Maxime Gauberti ◽  
Michael Naveau ◽  
Nolwenn Pasquet ◽  
...  

2018 ◽  
Vol 25 (6) ◽  
pp. 811-818 ◽  
Author(s):  
Irene M Vavasour ◽  
Roger Tam ◽  
David KB Li ◽  
Cornelia Laule ◽  
Carolyn Taylor ◽  
...  

Background: Tissue damage in both multiple sclerosis (MS) lesions and normal-appearing white matter (NAWM) are important contributors to disability and progression. Specific aspects of MS pathology can be measured using advanced imaging. Alemtuzumab is a humanised monoclonal antibody targeting CD52 developed for MS treatment. Objective: To investigate changes over 2 years of advanced magnetic resonance (MR) metrics in lesions and NAWM of MS patients treated with alemtuzumab. Methods: A total of 42 relapsing–remitting alemtuzumab-treated MS subjects were scanned for 2 years at 3 T. T1 relaxation, T2 relaxation, diffusion tensor, MR spectroscopy and volumetric sequences were performed. Mean T1 and myelin water fraction (MWF) were determined for stable lesions, new lesions and NAWM. Fractional anisotropy was calculated for the corpus callosum (CC) and N-acetylaspartate (NAA) concentration was determined from a large NAWM voxel. Brain parenchymal fraction (BPF), cortical thickness and CC area were also calculated. Results: No change in any MR measurement was found in lesions or NAWM over 24 months. BPF, cortical thickness and CC area all showed decreases in the first year followed by stability in the second year. Conclusion: Advanced MR biomarkers of myelin (MWF) and neuron/axons (NAA) show no change in NAWM over 24 months in alemtuzumab-treated MS participants.


2020 ◽  
pp. 0271678X2094861
Author(s):  
Rashid Ghaznawi ◽  
Maarten HT Zwartbol ◽  
Nicolaas PA Zuithoff ◽  
Jeroen de Bresser ◽  
Jeroen Hendrikse ◽  
...  

Global cerebral hypoperfusion may be involved in the aetiology of brain atrophy; however, long-term longitudinal studies on this relationship are lacking. We examined whether reduced cerebral blood flow was associated with greater progression of brain atrophy. Data of 1165 patients (61 ± 10 years) from the SMART-MR study, a prospective cohort study of patients with arterial disease, were used of whom 689 participated after 4 years and 297 again after 12 years. Attrition was substantial. Total brain volume and total cerebral blood flow were obtained from magnetic resonance imaging scans and expressed as brain parenchymal fraction (BPF) and parenchymal cerebral blood flow (pCBF). Mean decrease in BPF per year was 0.22% total intracranial volume (95% CI: –0.23 to –0.21). Mean decrease in pCBF per year was 0.24 ml/min per 100 ml brain volume (95% CI: –0.29 to –0.20). Using linear mixed models, lower pCBF at baseline was associated with a greater decrease in BPF over time ( p =  0.01). Lower baseline BPF, however, was not associated with a greater decrease in pCBF ( p =  0.43). These findings indicate that reduced cerebral blood flow is associated with greater progression of brain atrophy and provide further support for a role of cerebral blood flow in the process of neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document