A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder

2013 ◽  
Vol 124 (10) ◽  
pp. 1975-1985 ◽  
Author(s):  
Ahmad Khodayari-Rostamabad ◽  
James P. Reilly ◽  
Gary M. Hasey ◽  
Hubert de Bruin ◽  
Duncan J. MacCrimmon
2018 ◽  
Vol 99 ◽  
pp. 62-68 ◽  
Author(s):  
Malgorzata Maciukiewicz ◽  
Victoria S. Marshe ◽  
Anne-Christin Hauschild ◽  
Jane A. Foster ◽  
Susan Rotzinger ◽  
...  

2019 ◽  
Vol 29 ◽  
pp. S843
Author(s):  
Malgorzata Maciukiewicz ◽  
Victoria Marshe ◽  
Anne-Christine Hauschild ◽  
Jane A Foster ◽  
Susan Rotzinger ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Shu Zhao ◽  
Zhiwei Bao ◽  
Xinyi Zhao ◽  
Mengxiang Xu ◽  
Ming D. Li ◽  
...  

BackgroundMajor depressive disorder (MDD) is a global health challenge that impacts the quality of patients’ lives severely. The disorder can manifest in many forms with different combinations of symptoms, which makes its clinical diagnosis difficult. Robust biomarkers are greatly needed to improve diagnosis and to understand the etiology of the disease. The main purpose of this study was to create a predictive model for MDD diagnosis based on peripheral blood transcriptomes.Materials and MethodsWe collected nine RNA expression datasets for MDD patients and healthy samples from the Gene Expression Omnibus database. After a series of quality control and heterogeneity tests, 302 samples from six studies were deemed suitable for the study. R package “MetaOmics” was applied for systematic meta-analysis of genome-wide expression data. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic effectiveness of individual genes. To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection.ResultsOur analysis revealed six differentially expressed genes (AKR1C3, ARG1, KLRB1, MAFG, TPST1, and WWC3) with a false discovery rate (FDR) < 0.05 between MDD patients and control subjects. We then evaluated the diagnostic ability of these genes individually. With single gene prediction, we achieved a corresponding area under the curve (AUC) value of 0.63 ± 0.04, 0.67 ± 0.07, 0.70 ± 0.11, 0.64 ± 0.08, 0.68 ± 0.07, and 0.62 ± 0.09, respectively, for these genes. Next, we constructed the classifiers of SVM, RF, kNN, and NB with an AUC of 0.84 ± 0.09, 0.81 ± 0.10, 0.73 ± 0.11, and 0.83 ± 0.09, respectively, in validation datasets, suggesting that the SVM classifier might be superior for constructing an MDD diagnostic model. The final SVM classifier including 70 feature genes was capable of distinguishing MDD samples from healthy controls and yielded an AUC of 0.78 in an independent dataset.ConclusionThis study provides new insights into potential biomarkers through meta-analysis of GEO data. Constructing different machine learning models based on these biomarkers could be a valuable approach for diagnosing MDD in clinical practice.


2001 ◽  
Vol 62 (6) ◽  
pp. 413-420 ◽  
Author(s):  
Maurizio Fava ◽  
David L. Dunner ◽  
John H. Greist ◽  
Sheldon H. Preskorn ◽  
Madhukar H. Trivedi ◽  
...  

2019 ◽  
Vol 18 (05) ◽  
pp. 1579-1603 ◽  
Author(s):  
Zhijiang Wan ◽  
Hao Zhang ◽  
Jiajin Huang ◽  
Haiyan Zhou ◽  
Jie Yang ◽  
...  

Many studies developed the machine learning method for discriminating Major Depressive Disorder (MDD) and normal control based on multi-channel electroencephalogram (EEG) data, less concerned about using single channel EEG collected from forehead scalp to discriminate the MDD. The EEG dataset is collected by the Fp1 and Fp2 electrode of a 32-channel EEG system. The result demonstrates that the classification performance based on the EEG of Fp1 location exceeds the performance based on the EEG of Fp2 location, and shows that single-channel EEG analysis can provide discrimination of MDD at the level of multi-channel EEG analysis. Furthermore, a portable EEG device collecting the signal from Fp1 location is used to collect the second dataset. The Classification and Regression Tree combining genetic algorithm (GA) achieves the highest accuracy of 86.67% based on leave-one-participant-out cross validation, which shows that the single-channel EEG-based machine learning method is promising to support MDD prescreening application.


Sign in / Sign up

Export Citation Format

Share Document