ID 292 – Attention modulation during motor preparation in elderly subjects, freezers and non-freezers patients with Parkinson‘s disease: A time-frequency EEG study

2016 ◽  
Vol 127 (3) ◽  
pp. e73
Author(s):  
C. Tard ◽  
K. Dujardin ◽  
J. Bourriez ◽  
B. Molaee-Ardekani ◽  
P. Derambure ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Silvia P. Caminiti ◽  
Chiara Siri ◽  
Lucia Guidi ◽  
Angelo Antonini ◽  
Daniela Perani

This fMRI study deals with the neural correlates of spatial and objects working memory (SWM and OWM) in elderly subjects (ESs) and idiopathic Parkinson’s disease (IPD). Normal aging and IPD can be associated with a WM decline. In IPD population, some studies reported similar SWM and OWM deficits; others reported a greater SWM than OWM impairment. In the present fMRI research, we investigated whether compensated IPD patients and elderly subjects with comparable performance during the execution of SWM and OWM tasks would present differences in WM-related brain activations. We found that the two groups recruited a prevalent left frontoparietal network when performing the SWM task and a bilateral network during OWM task execution. More specifically, the ESs showed bilateral frontal and subcortical activations in SWM, at difference with the IPD patients who showed a strict left lateralized network, consistent with frontostriatal degeneration in IPD. The overall brain activation in the IPD group was more extended as number of voxels with respect to ESs, suggesting underlying compensatory mechanisms. In conclusion, notwithstanding comparable WM performance, the two groups showed consistencies and differences in the WM activated networks. The latter underline the compensatory processes of normal typical and pathological aging.


2021 ◽  
Author(s):  
Denchai Worasawate ◽  
Warisara Asawaponwiput ◽  
Natsue Yoshimura ◽  
Apichart Intarapanich ◽  
Decho Surangsrirat

BACKGROUND Parkinson’s disease (PD) is a long-term neurodegenerative disease of the central nervous system. The current diagnosis is dependent on clinical observation and the abilities and experience of a trained specialist. One of the symptoms that affect most patients over the course of their illness is voice impairment. OBJECTIVE Voice is one of the non-invasive data that can be collected remotely for diagnosis and disease progression monitoring. In this study, we analyzed voice recording data from a smartphone as a possible disease biomarker. The dataset is from one of the largest mobile PD studies, the mPower study. METHODS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. RESULTS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. CONCLUSIONS Classification accuracies of the proposed method with LeNet-5, ResNet-50, and VGGNet-16 are 97.7 ± 0.1%, 98.6 ± 0.2%, and 99.3 ± 0.1%, respectively. CLINICALTRIAL ClinicalTrials.gov NCT02696603; https://www.clinicaltrials.gov/ct2/show/NCT02696603


Author(s):  
Renata Sisto ◽  
Andrea Viziano ◽  
Alessandro Stefani ◽  
Arturo Moleti ◽  
Rocco Cerroni ◽  
...  

Abstract In the last decade, animal studies highlighted the sensitivity of hearing function to lack of specific cochlear dopamine receptors, while several studies on humans reported association between hearing loss and Parkinson’s disease, partially recovered after levodopa administration in de novo patients. Taken together, these observations suggest investigating the possible use of cochlear function outcome variables, particularly, otoacoustic emissions, as sensitive biomarkers of Parkinson’s disease. Any lateralization of hearing dysfunction correlated with Parkinson’s disease lateralization would 1) further confirm their association, and 2) provide a disease-specific differential outcome variable. Differential indicators are particularly useful for diagnostic purposes, because their effectiveness is not limited by physiological inter-subject fluctuations of the outcome variable. Recent advances in the acquisition and analysis techniques of otoacoustic emissions suggest using them for evaluating differential cochlear damage in the two ears. In this study, we quantitatively evaluated hearing function in a population of subjects with Parkinson’s disease, to investigate the occurrence of hearing loss, and, particularly, whether hearing dysfunction shows lateralization correlated to motor symptoms. Pure tone audiometry and distortion product otoacoustic emissions were used as outcome variables in eighty patients (mean age 65 ± 9 years) and forty-one controls (mean age 64 ± 10 years). An advanced customized acquisition and analysis system was developed and used for otoacoustic testing, which guarantees response stability independent of probe insertion depth, and has the sensitivity necessary to accurately assess the low levels of otoacoustic response typical of elderly subjects. To our knowledge, this is the first study introducing the distinction between ipsilateral and contralateral ear, with respect to the body side more affected by Parkinson’s disease motor symptoms. Significant asymmetry was found in the auditory function, as both otoacoustic responses and audiometric hearing levels were worse in the ipsilateral ear. Significantly worse hearing function was also observed in patients with Parkinson’s disease compared to controls, confirming previous studies. Several pathophysiological mechanisms may be hypothesized to explain asymmetric cochlear damage in Parkinson's disease, including the impairment of dopamine release and the involvement of extra-dopaminergic circuits, with the cholinergic pathway as a likely candidate. The observed asymmetry in the audiological response of patients with Parkinson’s disease suggests that lateralization of hearing dysfunction could represent a specific non-motor signature of the disease. The possible diagnostic use of cochlear dysfunction asymmetry as a specific biomarker of Parkinson’s disease deserves further investigation, needing a more precise quantitative assessment, which would require a larger sample size.


2007 ◽  
Vol 8 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Asok K. Sen ◽  
Jonathan O. Dostrovsky

Using a continuous wavelet transform we have detected the presence of intermittency in the beta oscillations of the local field potentials (LFPs) that were recorded from the subthalamic nucleus (STN) of patients with Parkinson's disease. The intermittent behavior was identified by plotting the wavelet power spectrum of the LFP signal on a time–frequency plane. We also computed the temporal variations of scale-averaged wavelet power and wavelet entropy (WE). An intermittent pattern is characterized by large amounts of power over very short periods of time separated by almost quiescent periods. Time-localized changes in WE further support the evidence of intermittency. The cause and significance of the intermittent beta activity are presently unclear. It may be due to complex interactions of the cortico-basal-ganglia networks converging at the STN level.


2003 ◽  
Vol 96 (1) ◽  
pp. 227-235 ◽  
Author(s):  
Anat Scheiman Elazary ◽  
Hagai Bergman ◽  
Revital Attia ◽  
Hilla Ben-Pazi

Different types of rapid tapping responses were described in the finger-tapping test. The “Hastening phenomenon” was described as an abnormal motor response in patients with Parkinson's disease. Accelerated tapping has been shown in a healthy elderly sample. It is not clear whether accelerated tapping relates to the hastening phenomenon or characterizes normal aging. We hypothesized that this sample of 21 healthy elderly people showed increased accelerated tapping but not hastening phenomenon. To assess this hypothesis, 20 healthy young and 21 elderly subjects performed a tapping test, requiring responses from 1 to 6 Hz. The healthy elderly sample showed increased accelerated tapping but not increased “hastening phenomenon.” We conclude that Accelerated tapping may represent age-related motor processes unlike the hastening phenomenon characterizing Parkinson's disease.


2003 ◽  
Vol 25 (5) ◽  
pp. 361-369 ◽  
Author(s):  
Gennaro De Michele ◽  
Stefano Sello ◽  
Maria Chiara Carboncini ◽  
Bruno Rossi ◽  
Soo-Kyung Strambi

Sign in / Sign up

Export Citation Format

Share Document