Non-negative matrix factorization-based time-frequency feature extraction of voice signal for Parkinson's disease prediction

2021 ◽  
pp. 101216
Author(s):  
Biswajit Karan ◽  
Sitanshu Sekhar Sahu ◽  
Juan Rafael Orozco-Arroyave ◽  
Kartik Mahto
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3680
Author(s):  
Lin Liang ◽  
Xingyun Ding ◽  
Fei Liu ◽  
Yuanming Chen ◽  
Haobin Wen

For early fault detection of a bearing, the localized defect generally brings a complex vibration signal, so it is difficult to detect the periodic transient characteristics from the signal spectrum using conventional bearing fault diagnosis methods. Therefore, many matrix analysis technologies, such as singular value decomposition (SVD) and reweighted SVD (RSVD), were proposed recently to solve this problem. However, such technologies also face failure in bearing fault detection due to the poor interpretability of the obtained eigenvector. Non-negative Matrix Factorization (NMF), as a part-based representation algorithm, can extract low-rank basis spaces with natural sparsity from the time–frequency representation. It performs excellent interpretability of the factor matrices due to its non-negative constraints. By this virtue, NMF can extract the fault feature by separating the frequency bands of resonance regions from the amplitude spectrogram automatically. In this paper, a new feature extraction method based on sparse kernel NMF (KNMF) was proposed to extract the fault features from the amplitude spectrogram in greater depth. By decomposing the amplitude spectrogram using the kernel-based NMF model with L1 regularization, sparser spectral bases can be obtained. Using KNMF with the linear kernel function, the time–frequency distribution of the vibration signal can be decomposed into a subspace with different frequency bands. Thus, we can extract the fault features, a series of periodic impulses, from the decomposed subspace according to the sparse frequency bands in the spectral bases. As a result, the proposed method shows a very high performance in extracting fault features, which is verified by experimental investigations and benchmarked by the Fast Kurtogram, SVD and NMF-based methods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammad Asif Emon ◽  
Ashley Heinson ◽  
Ping Wu ◽  
Daniel Domingo-Fernández ◽  
Meemansa Sood ◽  
...  

Abstract One of the visions of precision medicine has been to re-define disease taxonomies based on molecular characteristics rather than on phenotypic evidence. However, achieving this goal is highly challenging, specifically in neurology. Our contribution is a machine-learning based joint molecular subtyping of Alzheimer’s (AD) and Parkinson’s Disease (PD), based on the genetic burden of 15 molecular mechanisms comprising 27 proteins (e.g. APOE) that have been described in both diseases. We demonstrate that our joint AD/PD clustering using a combination of sparse autoencoders and sparse non-negative matrix factorization is reproducible and can be associated with significant differences of AD and PD patient subgroups on a clinical, pathophysiological and molecular level. Hence, clusters are disease-associated. To our knowledge this work is the first demonstration of a mechanism based stratification in the field of neurodegenerative diseases. Overall, we thus see this work as an important step towards a molecular mechanism-based taxonomy of neurological disorders, which could help in developing better targeted therapies in the future by going beyond classical phenotype based disease definitions.


2021 ◽  
Author(s):  
Denchai Worasawate ◽  
Warisara Asawaponwiput ◽  
Natsue Yoshimura ◽  
Apichart Intarapanich ◽  
Decho Surangsrirat

BACKGROUND Parkinson’s disease (PD) is a long-term neurodegenerative disease of the central nervous system. The current diagnosis is dependent on clinical observation and the abilities and experience of a trained specialist. One of the symptoms that affect most patients over the course of their illness is voice impairment. OBJECTIVE Voice is one of the non-invasive data that can be collected remotely for diagnosis and disease progression monitoring. In this study, we analyzed voice recording data from a smartphone as a possible disease biomarker. The dataset is from one of the largest mobile PD studies, the mPower study. METHODS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. RESULTS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. CONCLUSIONS Classification accuracies of the proposed method with LeNet-5, ResNet-50, and VGGNet-16 are 97.7 ± 0.1%, 98.6 ± 0.2%, and 99.3 ± 0.1%, respectively. CLINICALTRIAL ClinicalTrials.gov NCT02696603; https://www.clinicaltrials.gov/ct2/show/NCT02696603


Sign in / Sign up

Export Citation Format

Share Document