P022 Evidence that functionalized ferromagnetic microparticles with CD133 antigen decreases glioblastoma multiforme growth in vivo and in vitro by magnetic field induced hyperthermia

2017 ◽  
Vol 128 (3) ◽  
pp. e21 ◽  
Author(s):  
J.-R. Garcia-Montes ◽  
P.-F. Porceddu ◽  
R. Drucker-Colín ◽  
R. Moratalla ◽  
R. Martinez-Murillo
2020 ◽  
Vol 19 (2) ◽  
pp. 164-171
Author(s):  
Feng Xue ◽  
Tingting Chen

Glioblastoma multiforme is the most common malignancy of central nervous system. Herein we have evaluated the effect of L-tetrahydropalmatine, an isoquinoline alkaloid, on the tumor growth both in vivo and in vitro using C6 glioblastoma multiforme cells and BALB/c mice injected subcutaneously with C6/luc2 cells. The results of these studies show that L-tetrahydropalmatine exhibited cytotoxic effect on C6 glioblastoma multiforme cells, suppressed nuclear factor-kappa B activity, suppressed the levels of tumor-linked proteins such as matrix metalloproteinase-2/9, Cyclin-D1, vascular endothelial growth factor, and X-linked inhibitor of apoptosis protein via ERK/nuclear factor-kappa B cascade. Further, L-tetrahydropalmatine inhibited the cell migration and invasion properties of C6 cells, and also suppressed the tumor weight and volume in mice. Immunohistochemical staining of tumor tissues suggested that L-tetrahydropalmatine inhibited the extracellular-signal-regulated kinase/nuclear factor-kappa B cascade and suppressed the levels of Cyclin-D1; matrix metalloproteinase-2/9; X-linked inhibitor of apoptosis protein; and vascular endothelial growth factor, and also the progression and growth of glioblastoma multiforme in mice. In summary, L-tetrahydropalmatine inhibits the ERK/nuclear factor-kappa B cascade, decreases the tumor volume, and inhibits the proteins responsible for tumor growth both in vivo and in vitro.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1459
Author(s):  
Tatiana N. Zamay ◽  
Vladimir S. Prokopenko ◽  
Sergey S. Zamay ◽  
Kirill A. Lukyanenko ◽  
Olga S. Kolovskaya ◽  
...  

Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand—a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic–ferromagnet–non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.


2014 ◽  
Vol 20 (14) ◽  
pp. 3730-3741 ◽  
Author(s):  
Shiv K. Gupta ◽  
Ann C. Mladek ◽  
Brett L. Carlson ◽  
Felix Boakye-Agyeman ◽  
Katrina K. Bakken ◽  
...  

2015 ◽  
Author(s):  
Shaun D. Fouse ◽  
Anne Steino ◽  
Nicholas Butowski ◽  
Jeffrey A. Bacha ◽  
Sarath Kanekal ◽  
...  

1994 ◽  
Vol 17 (3) ◽  
pp. 155-162 ◽  
Author(s):  
G.J. Verkerke ◽  
H. Schraffordt Koops ◽  
R.P.H. Veth ◽  
H.J. Grootenboer ◽  
L.J. De Boer ◽  
...  

A malignant bone tumour may develop in the femur of a child. In the majority of cases it will be necessary to resect the bone involved, growth plate and adjacent tissues. A modular endoprosthetic system has been developed which can be extended non-invasively to bridge the defect resulting from such a resection. Elongation is achieved by using an external magnetic field. In vitro tests with a prototype showed that the lengthening element met all requirements. Six animal experiments showed that the lengthening element also functioned in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5404-5404
Author(s):  
Qianli Jiang ◽  
Hao Huang ◽  
Yongjun Zhou ◽  
Qiuxia Zhang ◽  
Sun Xiaowei ◽  
...  

Abstract Background: In our previous work (56th ASH poster, No.2416), we developed a novel cell transplantation system named MagIC-TT. The purpose of this study is to explore whether the MagIC-TT can promote hematopoietic recovery in the mice experiment and illustrate it¡¯s mechanism both in vivo and in vitro. Methods: 1) In vivo study: With regard to auto-transplantation, the C57BL/6 CD45-GFP cells were sorted and magnetized from the bone marrow of C57BL/6-Tg(CAG-EGFP) mice. Forty C57BL/6 female mice (2 groups, twenty mice each group) were transplanted into the femur cavity with or without magnetic field (M or W group), after 7.5Gy irradiation. Following transplantation, the survival of mice, hematopoiesis as well as GFP+ cells in different tissues, such as peripheral blood, bone marrow, liver, spleen, thymus and lung etc. were observed. Femurs of recipients were decalcified with our own derived semi-solid decalcification (SSD) technique to illustrate the distribution, proliferation of donor cells and the relationship between recipients and donor cells. Allo-transplantation: The C57BL/6 CD45-GFP cells were injected into the femur cavity of FVB mRFP transgenic mice (sponsored by Prof. XH Wu, Fudan University, Shanghai, China) after 7.5Gy irradiation. GVHD was observed in addition to what was done in auto-transplantation. 2) In vitro study: Magnetized CD45-GFP cells and non-magnetized BMSC-RFPs were cultured respectively or co-cultured with or without magnetic field (M or W group). The magnetic field was added to the top or the bottom of cell culture dish. Cell morphology, cell proliferation, cell viability, as well as cell migration, transwell migration and matrigel migration assays induced by magnetism were studied. The interaction of CD45-GFP cells and BMSC-RFPs was observed by confocal microscope, electronic microscope, immunohistochemical staining, western blot, real-time PCR and deep sequencing. Results: 1) In vivo study: During the first few hours after transplantation, lots of magnetized CD45-GFP cells resided within the femur and knee joints in M group while few in W group. Many GFP cells migrated into the lung soon after transplantation in the W group (P =0.046), followed by other organs such as kidney and skin (Fig.1). FACS showed that more GFP+ cells resided within the target femurs than the controls (Table.1). With SSD, frozen sections, confocal microscope and Lightsheet Z.1 Microimage (Carl Zeiss); transplanted GFP+ cells and their micro-environment were all well demonstrated (Fig.1). On removal of magnetic field, CD45-GFP cells were observed to migrate into the spleen, kidney, gut and other organs, showing the slow release of target transplanted cells from femur. GVHD on skin and lung etc. were observed in C57BL/6 to FVB allogenic transplanted mice (Fig. 1). The hematopoietic recovery in M group occurs much earlier than the controls, especially for the platelets, 10.67d ¡À 1.53d vs 14.75d ¡À 2.06d (M vs W group, P =0.035). 2) In vitro study: With the help of MagIC-TT, CD45-GFP cells can migrate through the matrigel and transwell membranes much more efficiently. The magnetized CD45-GFP cells advance toward the inner roof of petri dish in the culture medium, and attach to BMSC-RFP growing on the inner roof of dish and proliferate in the niche composed by BMSC-RFP under the effect of magnetic field (Fig.2). Conclusion: MagIC-TT could enhance CD45+ cells target migration, improve stem cell homing and proliferation efficiency, as well as promotion hematopoietic recovery in vivo. This study would shed light on current Hematological Stem Cell Transplantation (HSCT) and other cell therapies. Table 1. The FACS results of femurs of CD45-GFP cells injected into C57 mice, at 0.5h, 24h and 72h respectively. group 0.5h£¨%£© p 24h£¨%£© p 72h£¨%£© p *LC **RT *LC **RT *LC **RT BMM 0.017¡À0.006 0.497¡À0.151 0.040 0.080¡À0.026 1.573¡À0.508 0.030 0.190¡À0.139 1.960¡À0.809 0.049 BMW 0.017¡À0.012 0.050¡À0.017 0.184 0.013¡À0.006 0.027¡À0.015 0.184 0.023¡À0.015 0.320¡À0.434 0.368 P 1.000 0.007 0.013 0.006 0.108 0.036 *LC: Control femur without magnetic field (W group); **RT: Treated femur with magnetic field (M group). Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document