P25 Individual differences in risk decision taking correlate with modulation of brain activity induced by multifocal transcranial direct current stimulation

2020 ◽  
Vol 131 (4) ◽  
pp. e25
Author(s):  
O. Martin de la Torre ◽  
D. Gallardo Pujol ◽  
D. Redolar Ripoll
2020 ◽  
Author(s):  
Davinia Fernández-Espejo ◽  
Davide Aloi ◽  
Antonio Incisa della Rocchetta ◽  
Damon Hoad ◽  
Richard Greenwood ◽  
...  

Abstract Background: Therapeutic options for patients with prolonged disorders of consciousness (PDOC) are very limited, and patients often show little to no progress over time. It is widely recognized that some PDOC patients retain a higher level of cognition that may be apparent on the basis of their external responses, and simply are unable to produce purposeful motor behaviours. This dissociation has been linked to specific impairments in the motor network that lead to a reduction in thalamo-cortical coupling. Here, we will assess whether transcranial direct current stimulation (tDCS) can modulate thalamo-cortical coupling and improve patients’ responsiveness. We will focus on characterising the mechanisms of action of tDCS and the bases for potential individual differences in responsiveness to the stimulation across participants.Methods: This is a multi-centre double-blind randomised crossover feasibility study. It is divided into two streams: (a) MRI stream: 5 PDOC patients will complete 5 anodal, cathodal, and sham stimulation sessions (paired with passive mobilisation of the thumb) in separate weeks. We will measure brain activity and connectivity with functional magnetic resonance imaging and electroencephalography (EEG). We will look at brain structures to assess differences associated with responsiveness. (b) Bedside stream: 10 patients will complete one session of anodal or cathodal stimulation and one session of sham. We will measure brain activity and connectivity with EEG and we will conduct follow up assessments at 3 and 6 months. In both streams we will also look at changes in the clinical profile of patients with the Coma Recovery Scale Revised and in command following behaviour with electromyography and motion tracking. We will assess feasibility on measures of eligibility, recruitment, retention, and completion of tests.Discussion: This feasibility study is the first step towards developing personalised tDCS interventions to restore external responsiveness in PDOC patients. Our results will inform the design of a future trial fully powered for characterising neural, behavioural, and clinical effects of tDCS in PDOC as well as the mechanisms underlying individual differences in responsiveness.


2020 ◽  
Vol 10 (5) ◽  
pp. 310
Author(s):  
Samuel Gowan ◽  
Brenton Hordacre

Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.


2015 ◽  
Vol 27 (12) ◽  
pp. 2382-2393 ◽  
Author(s):  
Raquel E. London ◽  
Heleen A. Slagter

Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.


2017 ◽  
Vol 29 (9) ◽  
pp. 1498-1508 ◽  
Author(s):  
Benjamin Katz ◽  
Jacky Au ◽  
Martin Buschkuehl ◽  
Tessa Abagis ◽  
Chelsea Zabel ◽  
...  

A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.


Neuroreport ◽  
2004 ◽  
Vol 15 (8) ◽  
pp. 1307-1310 ◽  
Author(s):  
Andrea Antal ◽  
Edina T. Varga ◽  
Tamas Z. Kincses ◽  
Michael A. Nitsche ◽  
Walter Paulus

Sign in / Sign up

Export Citation Format

Share Document