High frequency oscillations and interictal discharges at 50 μm spatial resolution

Author(s):  
Stephen V. Gliske
2020 ◽  
Author(s):  
Jimmy C. Yang ◽  
Angelique C. Paulk ◽  
Sang Heon Lee ◽  
Mehran Ganji ◽  
Daniel J. Soper ◽  
...  

AbstractObjectiveInterictal discharges (IIDs) and high frequency oscillations (HFOs) are neurophysiologic biomarkers of epilepsy. In this study, we use custom poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) microelectrodes to better understand their microscale dynamics.MethodsElectrodes with spatial resolution down to 50µm were used to record intraoperatively in 30 subjects. For IIDs, putative spatiotemporal paths were generated by peak-tracking, followed by clustering. For HFOs, repeating patterns were elucidated by clustering similar time windows. Fast events, consistent with multi-unit activity (MUA), were covaried with either IIDs or HFOs.ResultsIIDs seen across the entire array were detected in 93% of subjects. Local IIDs, observed across <50% of the array, were seen in 53% of subjects. IIDs appeared to travel across the array in specific paths, and HFOs appeared in similar repeated spatial patterns. Finally, microseizure events were identified spanning 50-100µm. HFOs covaried with MUA, but not with IIDs.ConclusionsOverall, these data suggest micro-domains of irritable cortex that form part of an underlying pathologic architecture that contributes to the seizure network.SignificanceMicroelectrodes in cases of human epilepsy can reveal dynamics that are not seen by conventional electrocorticography and point to new possibilities for their use in the diagnosis and treatment of epilepsy.HighlightsPEDOT:PSS microelectrodes with at least 50µm spatial resolution uniquely reveal spatiotemporal patterns of markers of epilepsyHigh spatiotemporal resolution allows interictal discharges to be tracked and reveal cortical domains involved in microseizuresHigh frequency oscillations detected by microelectrodes demonstrate localized clustering on the cortical surface


Epilepsia ◽  
2021 ◽  
Author(s):  
Nicole E. C. Klink ◽  
Willemiek J. E. M. Zweiphenning ◽  
Cyrille H. Ferrier ◽  
Peter H. Gosselaar ◽  
Kai J. Miller ◽  
...  

Author(s):  
Lotte Noorlag ◽  
Maryse A. van 't Klooster ◽  
Alexander C. van Huffelen ◽  
Nicole E.C. van Klink ◽  
Manon J.N.L. Benders ◽  
...  

2017 ◽  
Vol 130 ◽  
pp. 21-26 ◽  
Author(s):  
Laura Uva ◽  
Davide Boido ◽  
Massimo Avoli ◽  
Marco de Curtis ◽  
Maxime Lévesque

1989 ◽  
Vol 63 (7) ◽  
pp. 44S-46S ◽  
Author(s):  
L. FREITAG ◽  
J. BREMME ◽  
M. SCHROER

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Musa Ozturk ◽  
Ashwin Viswanathan ◽  
Sameer A. Sheth ◽  
Nuri F. Ince

AbstractDespite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson’s disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130–180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.


Sign in / Sign up

Export Citation Format

Share Document