Association of dietary selenium intake with telomere length in middle-aged and older adults

2020 ◽  
Vol 39 (10) ◽  
pp. 3086-3091 ◽  
Author(s):  
Yanling Shu ◽  
Mingyang Wu ◽  
Senbei Yang ◽  
Youjie Wang ◽  
Huawen Li
2017 ◽  
Vol 74 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
Karen D Lincoln ◽  
Donald A Lloyd ◽  
Ann W Nguyen

Abstract Objectives A common mechanism underlying premature morbidity may be accelerated biological aging as reflected by salivary telomere length (STL). This study examined the extent to which social relationships, both positive and negative, can be protective or confer risk relative to biological aging. Method Data from the Health and Retirement Study and multiple regression were used to examine cross-sectional associations between STL, self-reported social support, and negative interaction (e.g., conflict, criticism) with family in a nationally representative sample of African American and non-Hispanic White middle-aged and older adults (N = 4,080). Results Social support from family was associated with shorter STL. Negative interaction with family had no main effect on STL but interactions characterized by high social support and more frequent negative interactions were associated with longer STL. Negative interaction with family was negatively associated with STL for African Americans and Whites but the magnitude of the effect was greater for African Americans. Discussion Study findings highlight the role of social relationships in physiological deterioration among middle-aged and older adults and identify a potential mechanism whereby race is linked to accelerated biological aging. Findings highlight the importance of considering positive and negative aspects of social relationships to understand the consequences of social connections for cellular aging in diverse populations.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Buyun Liu ◽  
Yangbo Sun ◽  
Guifeng Xu ◽  
Shuang Rong ◽  
Wei Bao

Abstract Objectives DNA damage induced by oxidative stress is implicated in accelerated telomere shortening, a biomarker of biological aging. Although selenium has antioxidant properties, its impact on telomere length is largely unknown. This study aimed to examine the association between dietary selenium intake and leukocyte telomere length in a nationally representative sample of US adults. Methods We included 7409 adults aged 20 years or older who participated in the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Dietary selenium intake was calculated using data collected in the 24-hour dietary recall. Leukocyte telomere length was assayed using the quantitative polymerase chain reaction method. The association between selenium intake and telomere length was estimated by weighted linear regression models adjusting for demographic, socioeconomic and lifestyle factors, body mass index, supplements intake, and leukocyte cell type composition. Results The average dietary selenium intake was 109.1 mg/d (standard error [SE] 1.15). We didn't find a significant association between dietary selenium intake and telomere length in US adults. The average telomere length (SE) was 1.01 (0.02), 1.01 (0.01), and 1.04 (0.01) across increasing tertiles of dietary selenium intake. However, a significant interaction was observed for age (P = 0.02). Among individuals aged 20–44 years, the β coefficient of log-transformed telomere length, compared to lowest tertile of dietary selenium intake, was −0.041 (SE 0.012, P = 0.002) and −0.033 (SE 0.018, P = 0.07) for middle tertile and the highest tertile of selenium intake, respectively. The corresponding β coefficient was 0.009 (SE 0.016, P = 0.59) and −0.001 (SE 0.012, P = 0.95), respectively, for adults 45–64 years old, and 0.017 (SE 0.015, P = 0.28) and 0.059 (SE 0.021, P = 0.01), respectively, for those aged 65 years or older. The results were not appreciably changed even after additionally adjustment for dietary intake of vitamin A, vitamin E, and zinc. Conclusions The association between dietary selenium intake and telomere length differed significantly by age groups, indicating that higher selenium intake may prevent telomere shortening in older adults but not in younger or middle-aged adults. Further studies about the underlying mechanisms are warranted. Funding Sources NA.


Author(s):  
Adolfo G. Cuevas ◽  
Siobhan Greatorex-Voith ◽  
Nadia Abuelezam ◽  
Natalie Eckert ◽  
Shervin Assari

SLEEP ◽  
2014 ◽  
Vol 37 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Matthew R. Cribbet ◽  
McKenzie Carlisle ◽  
Richard M. Cawthon ◽  
Bert N. Uchino ◽  
Paula G. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document