Machine Learning for Auto-segmentation in Radiotherapy Planning

2022 ◽  
Author(s):  
K. Harrison ◽  
H. Pullen ◽  
C. Welsh ◽  
O. Oktay ◽  
J. Alvarez-Valle ◽  
...  
2021 ◽  
Vol 52 (2) ◽  
pp. S3
Author(s):  
Grace Tsui ◽  
Derek S. Tsang ◽  
Chris McIntosh ◽  
Thomas G. Purdie ◽  
Glenn Bauman ◽  
...  

2020 ◽  
Vol 196 (10) ◽  
pp. 856-867 ◽  
Author(s):  
Martin Kocher ◽  
Maximilian I. Ruge ◽  
Norbert Galldiks ◽  
Philipp Lohmann

Abstract Background Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumors. Methods This study is based on comprehensive literature research on machine learning and radiomics analyses in neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases. Results Feature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the determination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection, automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differentiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high diagnostic accuracies of 80–90% can be achieved by most approaches, despite a large variety in terms of applied imaging techniques and computational methods. Conclusion Clinical application of automated image analyses based on radiomics and artificial intelligence has a great potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with these techniques is the large variability and the lack of standardization of the methods applied.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xue Bai ◽  
Guoping Shan ◽  
Ming Chen ◽  
Binbing Wang

Abstract Background Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) are standard physical technologies of stereotactic body radiotherapy (SBRT) that are used for patients with non-small-cell lung cancer (NSCLC). The treatment plan quality depends on the experience of the planner and is limited by planning time. An automated planning process can save time and ensure a high-quality plan. This study aimed to introduce and demonstrate an automated planning procedure for SBRT for patients with NSCLC based on machine-learning algorithms. The automated planning was conducted in two steps: (1) determining patient-specific optimized beam orientations; (2) calculating the organs at risk (OAR) dose achievable for a given patient and setting these dosimetric parameters as optimization objectives. A model was developed using data of historical expertise plans based on support vector regression. The study cohort comprised patients with NSCLC who were treated using SBRT. A training cohort (N = 125) was used to calculate the beam orientations and dosimetric parameters for the lung as functions of the geometrical feature of each case. These plan–geometry relationships were used in a validation cohort (N = 30) to automatically establish the SBRT plan. The automatically generated plans were compared with clinical plans established by an experienced planner. Results All 30 automated plans (100%) fulfilled the dose criteria for OARs and planning target volume (PTV) coverage, and were deemed acceptable according to evaluation by experienced radiation oncologists. An automated plan increased the mean maximum dose for ribs (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). The minimum, maximum, and mean dose; homogeneity index; conformation index to PTV; doses to other organs; and the total monitor units showed no significant differences between manual plans established by experts and automated plans (P > 0.05). The hands-on planning time was reduced from 40–60 min to 10–15 min. Conclusion An automated planning method using machine learning was proposed for NSCLC SBRT. Validation results showed that the proposed method decreased planning time without compromising plan quality. Plans generated by this method were acceptable for clinical use.


2020 ◽  
Vol 16 ◽  
pp. 149-155
Author(s):  
Samsara Terparia ◽  
Romaana Mir ◽  
Yat Tsang ◽  
Catharine H Clark ◽  
Rushil Patel

2020 ◽  
Vol 150 ◽  
pp. S15
Author(s):  
Grace Tsui ◽  
Derek Tsang ◽  
Chris McIntosh ◽  
Tom Purdie ◽  
Mohammad Khandwala ◽  
...  

2016 ◽  
Vol 43 (6Part46) ◽  
pp. 3883-3883 ◽  
Author(s):  
B Ibragimov ◽  
F Pernus ◽  
P Strojan ◽  
L Xing

Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 131 ◽  
Author(s):  
Ian Boon ◽  
Tracy Au Yong ◽  
Cheng Boon

The fields of radiotherapy and clinical oncology have been rapidly changed by the advances of technology. Improvement in computer processing power and imaging quality heralded precision radiotherapy allowing radiotherapy to be delivered efficiently, safely and effectively for patient benefit. Artificial intelligence (AI) is an emerging field of computer science which uses computer models and algorithms to replicate human-like intelligence and perform specific tasks which offers a huge potential to healthcare. We reviewed and presented the history, evolution and advancement in the fields of radiotherapy, clinical oncology and machine learning. Radiotherapy target delineation is a complex task of outlining tumour and organ at risks volumes to allow accurate delivery of radiotherapy. We discussed the radiotherapy planning, treatment delivery and reviewed how technology can help with this challenging process. We explored the evidence and clinical application of machine learning to radiotherapy. We concluded on the challenges, possible future directions and potential collaborations to achieve better outcome for cancer patients.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2104 ◽  
Author(s):  
Carlton Chu ◽  
Jeffrey De Fauw ◽  
Nenad Tomasev ◽  
Bernardino Romera Paredes ◽  
Cían Hughes ◽  
...  

Radiotherapy is one of the main ways head and neck cancers are treated; radiation is used to kill cancerous cells and prevent their recurrence. Complex treatment planning is required to ensure that enough radiation is given to the tumour, and little to other sensitive structures (known as organs at risk) such as the eyes and nerves which might otherwise be damaged. This is especially difficult in the head and neck, where multiple at-risk structures often lie in extremely close proximity to the tumour. It can take radiotherapy experts four hours or more to pick out the important areas on planning scans (known as segmentation). This research will focus on applying machine learning algorithms to automatic segmentation of head and neck planning computed tomography (CT) and magnetic resonance imaging (MRI) scans at University College London Hospital NHS Foundation Trust patients. Through analysis of the images used in radiotherapy DeepMind Health will investigate improvements in efficiency of cancer treatment pathways.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document