Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China

2019 ◽  
Vol 204 ◽  
pp. 130-143 ◽  
Author(s):  
Maowen Li ◽  
Zhuoheng Chen ◽  
Xiaoxiao Ma ◽  
Tingting Cao ◽  
Menghui Qian ◽  
...  
2017 ◽  
Vol 28 (6) ◽  
pp. 996-1005 ◽  
Author(s):  
Shuangfang Lu ◽  
Wei Liu ◽  
Min Wang ◽  
Linye Zhang ◽  
Zhentao Wang ◽  
...  

2017 ◽  
Vol 31 (4) ◽  
pp. 3635-3642 ◽  
Author(s):  
Guohui Chen ◽  
Shuangfang Lu ◽  
Junfang Zhang ◽  
Min Wang ◽  
Jinbu Li ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Pengfei Zhang ◽  
Shuangfang Lu ◽  
Zhiping Zeng ◽  
Xiangchun Chang ◽  
Junqian Li ◽  
...  

To better understand the pore structure and fractal character of lacustrine shales and their influence on liquid hydrocarbon occurrences, in this study, a total of 29 lacustrine oil-bearing shale samples collected from the Shahejie Formation in the Dongying Sag, Bohai Bay Basin, were investigated based on nitrogen adsorption (NGA) analysis combined with TOC, Rock-Eval pyrolysis, X-ray diffraction (XRD), and field emission-scanning electron microscopy (FE-SEM) experiments. The relationships among the compositions (TOC, minerals, and oil content), pore structures, and fractal dimensions of the lacustrine shale samples were discussed. The results showed that the adsorption and fractal characteristics of lacustrine oil-bearing shales differ at relative pressures of 0-0.1 and 0.5-1. Two corresponding fractal dimensions D 1 and D 2 were determined by the FHH model according to the nitrogen adsorption branches. Specifically, D 1 varies from 2.4292 to 2.6109 (mean 2.5245), and D 2 varies between 2.4680 and 2.8535 (mean 2.6889). The specific surface area (SSA) ranges from 1.512 m2/g to 34.002 m2/g, with an average of 13.656 m2/g, the total pore volume is between 6.0 × 10-3 cm3/g and 48.4 × 10-3 cm3/g (mean 24.5 × 10-3 cm3/g), and the average pore diameter is in the range of 4.22 nm to 19.57 nm (mean 9.35 nm). Both D 1 and D 2 increase with increasing SSA and increase with decreasing average pore diameters but have no correlation with pore volume. Moreover, D 1 and D 2 exhibit positive relationships with clay minerals and negative correlations with carbonate minerals (calcite and dolomite). The relationship between fractal dimensions ( D 1 and D 2 ) and TOC contents is expressed as a U-shaped curve, characterized by the minimum D values at approximately 3% TOC. The shale oil content is controlled by the pore structures and fractal dimensions, and lacustrine shales with lower SSAs and smaller fractal dimensions would have more free oil. Therefore, lacustrine shales in the oil window with TOC contents ranging from 2% to 4% are probably the preferred shale oil exploration target in the Shahejie Formation, Dongying Sag, Bohai Bay Basin. The results indicate that fractal analysis can provide insight into the pore structure characteristics and oil storage capacity of lacustrine shales.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


Sign in / Sign up

Export Citation Format

Share Document