scholarly journals Effects of attentional shifts along the vertical axis on number processing: An eye-tracking study with optokinetic stimulation

Cognition ◽  
2022 ◽  
Vol 221 ◽  
pp. 104991
Author(s):  
Arianna Felisatti ◽  
Mariagrazia Ranzini ◽  
Elvio Blini ◽  
Matteo Lisi ◽  
Marco Zorzi
2021 ◽  
Author(s):  
Arianna Felisatti ◽  
Mariagrazia Ranzini ◽  
Elvio Blini ◽  
Matteo Lisi ◽  
Marco Zorzi

Previous studies suggest that associations between numbers and space are mediated by shifts of visuospatial attention along the horizontal axis. In this study, we investigated the effect of vertical shifts of overt attention, induced by optokinetic stimulation (OKS) and monitored through eye-tracking, in two tasks requiring explicit (number comparison) or implicit (parity judgment) processing of number magnitude. Participants were exposed to black-and-white stripes (OKS) that moved vertically (upward or downward) or remained static (control condition). During the OKS, participants were asked to verbally classify auditory one-digit numbers as larger/smaller than 5 (comparison task; Exp. 1) or as odd/even (parity task; Exp. 2). OKS modulated response times in both experiments. In Exp.1, downward attentional displacement increased the Magnitude effect (slower responses for large numbers) and reduced the Distance effect (slower responses for numbers close to the reference). In Exp.2, we observed a parity by magnitude interaction that was amplified by downward OKS. Moreover, eye tracking analyses revealed an influence of number processing on eye movements both in Exp. 1, with eye gaze shifting downwards during the processing of numbers 1-2 as compared to 8-9; and in Exp. 2, with leftward shifts after large even numbers (6,8) and rightward shifts after large odd numbers (7,9). These results provide evidence of bidirectional links between number and space and extend them to the vertical dimension. Moreover, they document the influence of visuo-spatial attention on processing of numerical magnitude, numerical distance and parity. Together, our findings are in line with grounded and embodied accounts of numerical cognition.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Noriyuki Matsuda ◽  
Haruhiko Takeuchi

Assuming that scenes would be visually scanned by chunking information, we partitioned fixation sequences of web page viewers into chunks using isolate gaze point(s) as the delimiter. Fixations were coded in terms of the segments in a5×5mesh imposed on the screen. The identified chunks were mostly short, consisting of one or two fixations. These were analyzed with respect to the within- and between-chunk distances in the overall records and the patterns (i.e., subsequences) frequently shared among the records. Although the two types of distances were both dominated by zero- and one-block shifts, the primacy of the modal shifts was less prominent between chunks than within them. The lower primacy was compensated by the longer shifts. The patterns frequently extracted at three threshold levels were mostly simple, consisting of one or two chunks. The patterns revealed interesting properties as to segment differentiation and the directionality of the attentional shifts.


Author(s):  
Jon W. Carr ◽  
Valentina N. Pescuma ◽  
Michele Furlan ◽  
Maria Ktori ◽  
Davide Crepaldi

AbstractA common problem in eye-tracking research is vertical drift—the progressive displacement of fixation registrations on the vertical axis that results from a gradual loss of eye-tracker calibration over time. This is particularly problematic in experiments that involve the reading of multiline passages, where it is critical that fixations on one line are not erroneously recorded on an adjacent line. Correction is often performed manually by the researcher, but this process is tedious, time-consuming, and prone to error and inconsistency. Various methods have previously been proposed for the automated, post hoc correction of vertical drift in reading data, but these methods vary greatly, not just in terms of the algorithmic principles on which they are based, but also in terms of their availability, documentation, implementation languages, and so forth. Furthermore, these methods have largely been developed in isolation with little attempt to systematically evaluate them, meaning that drift correction techniques are moving forward blindly. We document ten major algorithms, including two that are novel to this paper, and evaluate them using both simulated and natural eye-tracking data. Our results suggest that a method based on dynamic time warping offers great promise, but we also find that some algorithms are better suited than others to particular types of drift phenomena and reading behavior, allowing us to offer evidence-based advice on algorithm selection.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Arthur Crucq

Linear perspective has long been used to create the illusion of three-dimensional space on the picture plane. One of its central axioms comes from Euclidean geometry and holds that all parallel lines converge in a single vanishing point. Although linear perspective provided the painter with a means to organize the painting, the question is whether the gaze of the beholder is also affected by the underlying structure of linear perspective: for instance, in such a way that the orthogonals leading to the vanishing point also automatically guides the beholder’s gaze. This was researched during a pilot study by means of an eye-tracking experiment at the Lab for Cognitive Research in Art History (CReA) of the University of Vienna. It appears that in some compositions the vanishing point attracts the view of the participant. This effect is more significant when the vanishing point coincides with the central vertical axis of the painting, but is even stronger when the vanishing point also coincides with a major visual feature such as an object or figure. The latter calls into question what exactly attracts the gaze of the viewer, i.e., what comes first: the geometrical construct of the vanishing point or the visual feature?


2017 ◽  
Vol 33 (S1) ◽  
pp. 245-245
Author(s):  
Luciano Recalde ◽  
José Núñez ◽  
César Yegros ◽  
Carolina Villegas

INTRODUCTION:There are different devices, systems and technologies for people with disabilities. It's necessary to provide information on the effectiveness of products in the market and competitiveness in terms of price-quality, and providing an endorsement in the acquisition of technologies that improve their quality of life. The use of eye tracking devices is growing and its implementation in different areas has attracted the attention of several developers. Therefore the need to generate a product that evaluates the functionality of such devices is necessary in order to avoid unnecessary expenses when acquiring or repairing one of these devices.METHODS:An interface was created with different functionalities such as the location of the coordinates in which the pointer is located, standardized graphic interface design to provide statistical data that allow an objective result for its subsequent analysis and an endless number of design possibilities.The tests performed were of accuracy and precision where the subject was asked to follow the instructions given and observe a sequence of points, especially the points located at the ends of the monitor as these are the critical points in which there is less coincidence between the cursor and the gaze.RESULTS:The results obtained provided information on the performance of the tracking device. In this way it was possible to establish that the accuracy of the ocular tracker: it was ± 12.83 pixels on the horizontal axis and ± 10.66 pixels on the vertical axis. The precision was ± 9.8 pixels on the horizontal axis and ± 14.23 pixels on the vertical axis.This shows the use phenomenon caused due to the limited mobility of the eyes in the vertical axis in comparison to the horizontal mobility. The precision data obtained indicate that, because the movement on the vertical axis is smaller, there is a less continuous spectrum of positions on the axis, which translates to less precision.CONCLUSIONS:The data obtained can be used to compare with the results of the test with other eye tracking devices and thus this could serve as a tool to select an eye tracking device according to the user's need and his economical capabilities.


2000 ◽  
Vol 84 (5) ◽  
pp. 2552-2563 ◽  
Author(s):  
M. P. Arts ◽  
C. I. De Zeeuw ◽  
J. Lips ◽  
E. Rosbak ◽  
J. I. Simpson

The caudal dorsal cap (dc) of the inferior olive is involved in the control of horizontal compensatory eye movements. It provides those climbing fibers to the vestibulocerebellum that modulate optimally to optokinetic stimulation about the vertical axis. This modulation is mediated at least in part via an excitatory input to the caudal dc from the pretectal nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system. In addition, the caudal dc receives a substantial GABAergic input from the nucleus prepositus hypoglossi (NPH). To investigate the possible contribution of this bilateral inhibitory projection to the visual responsiveness of caudal dc neurons, we recorded the climbing fiber activity (i.e., complex spikes) of vertical axis Purkinje cells in the flocculus of anesthetized rabbits before and after ablative lesions of the NPH. When the NPH ipsilateral to the recorded flocculus was lesioned, the spontaneous complex spike firing frequency did not change significantly; but when both NPHs were lesioned, the spontaneous complex spike firing frequency increased significantly. When only the contralateral NPH was lesioned, the spontaneous complex spike firing frequency decreased significantly. Neither unilateral nor bilateral lesions had a significant influence on the depth of complex spike modulation during constant velocity optokinetic stimulation or on the transient continuation of complex spike modulation that occurred when the constant velocity optokinetic stimulation stopped. The effects of the lesions on the spontaneous complex spike firing frequency could not be explained when only the projections from the NPH to the inferior olive were considered. Therefore we investigated at the electron microscopic level the nature of the commissural connection between the two NPHs. The terminals of this projection were found to be predominantly GABAergic and to terminate in part on GABAergic neurons. When this inhibitory commissural connection is taken into consideration, then the effects of NPH lesions on the spontaneous firing frequency of floccular complex spikes are qualitatively explicable in terms of relative weighting of the commissural and caudal dc projections of the NPH. In summary, we conclude that in the anesthetized rabbit the inhibitory projection of the NPH to the caudal dc influences the spontaneous firing frequency of floccular complex spikes but not their modulation by optokinetic stimulation.


2009 ◽  
Vol 24 (4) ◽  
pp. 371-386 ◽  
Author(s):  
K. Moeller ◽  
S. Neuburger ◽  
L. Kaufmann ◽  
K. Landerl ◽  
H.-C. Nuerk

2020 ◽  
Author(s):  
Jon W Carr ◽  
Valentina Nicole Pescuma ◽  
Michele Furlan ◽  
Maria Ktori ◽  
Davide Crepaldi

A common problem in eye tracking research is vertical drift—the progressive displacement of fixation registrations on the vertical axis that results from a gradual loss of eye tracker calibration over time. This is particularly problematic in experiments that involve the reading of multiline passages, where it is critical that fixations on one line are not erroneously recorded on an adjacent line. Correction is often performed manually by the researcher, but this process is tedious, time-consuming, and prone to error and inconsistency. Various methods have previously been proposed for the automated, post-hoc correction of vertical drift in reading data, but these methods vary greatly, not just in terms of the algorithmic principles on which they are based, but also in terms of their availability, documentation, implementation languages, and so forth. Furthermore, these methods have largely been developed in isolation with little attempt to systematically evaluate them, meaning that drift correction techniques are moving forward blindly. We document ten major algorithms, including two that are novel to this paper, and evaluate them using both simulated and natural eye tracking data. Our results suggest that a method based on dynamic time warping offers great promise, but we also find that some algorithms are better suited than others to particular types of drift phenomena and reading behavior, allowing us to offer evidence-based advice on algorithm selection.


2020 ◽  
Vol 13 (5) ◽  
Author(s):  
Shirin Sadeghpour ◽  
Jorge Otero-Millan

While many studies have characterized the eye movements during visual fixation, including microsaccades, in most cases only horizontal and vertical components have been recorded and analyzed. Thus, little is known about the torsional component of microsaccades. We took advantage of a newly developed software and hardware to record eye movements around the three axes of rotation during fixation and torsional optokinetic stimulus. We found that the average amplitude of the torsional component of microsaccades during fixation was 0.34 ± 0.07 degrees with velocities following a main sequence with a slope comparable to the horizontal and vertical components. We also found the size of the torsional displacement during microsaccades was correlated with the horizontal but not the vertical component. In the presence of an optokinetic stimulus a nystagmus was induced producing a more frequent and larger torsional quick phases compared to microsaccades produced during fixation with a stationary stimulus. The torsional component and the vertical vergence component of quick phases grew larger with higher velocities. Additionally, our results validate and show the feasibility of recording torsional eye movements using video eye tracking in a desktop mounted setup.


1993 ◽  
Vol 69 (2) ◽  
pp. 303-317 ◽  
Author(s):  
H. S. Tan ◽  
J. van der Steen ◽  
J. I. Simpson ◽  
H. Collewijn

1. Three-dimensional rotations of both eyes were measured in alert rabbits during optokinetic stimulation about axes lying in the horizontal plane or about an earth-vertical axis, with either one or both eyes viewing the stimulus. Optokinetic stimulus speed was 2 degrees /s, either continuous or alternating in polarity (triangular stimulus). In addition to the gains of the responses, the orientations of the response axes relative to the stimulus axes were determined. 2. In comparison to the response to constant-speed optokinetic stimulation about the vertical axis, the response to constant-speed optokinetic stimulation about horizontal axes was characterized by the lack of a speed buildup. In many cases, slow phase tracking was good as long as the eye was within the central oculomotor range but deteriorated when eye deviation became more eccentric and fast phases failed to be generated. These features suggest that the optokinetic reflex about horizontal axes functions as a position-control system, rather than as a velocity-control system. 3. Binocular optokinetic stimulation at constant speed (2 degrees/s) about the roll axis (0 degrees azimuth horizontal axis) elicited disconjugate responses. Although the gain of the response was not significantly different in the two eyes (0.38 for downward and 0.44 for upward stimulation), the response axes of the two eyes differed by as much as 51 degrees. 4. Monocular, horizontal axis optokinetic stimulation at constant speed elicited responses that were grossly dissociated between the two eyes. The magnitude of the responses was anisotropic in that it varied with the azimuthal orientation of the stimulus axis; the maximum gain for each eye (0.41 for the seeing and 0.33 for the covered eye) was at 135 degrees azimuth for each eye. The axis orientation and direction (sense of rotation) of the optokinetic stimulus eliciting the maximal response for each eye coincided with the optic flow normally associated with the maximal excitation of the corresponding ipsilateral anterior canal. 5. Binocular, triangular optokinetic stimulation with small excursions (+/- 10 degrees), which avoided the saturation problems of constant-speed stimulation, elicited adequate responses without systematic directional asymmetries. Gain was approximately 0.9 for all stimulus axis orientations in the horizontal plane. 6. During monocular stimulation with triangular stimuli, the response of the seeing eye showed a gain of approximately 0.5 for all orientations of the stimulus axis. In contrast, the covered eye showed anisotropic responses, with a maximum gain of approximately 0.5 during stimulation of the seeing eye about its 45 degree axis.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document