Progress in the study and management of river ice jams

2008 ◽  
Vol 51 (1) ◽  
pp. 2-19 ◽  
Author(s):  
Spyros Beltaos
Keyword(s):  
1990 ◽  
Vol 17 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Harold S. Belore ◽  
Brian C. Burrell ◽  
Spyros Beltaos

In Canada, flooding due to the rise in water levels upstream of an ice jam, or the temporary exceedance of the flow and ice-carrying capacity of a channel upon release of an ice jam, has resulted in the loss of human life and extensive economic losses. Ice jam mitigation is a component of river ice management which includes all activities carried out to prevent or remove ice jams, or to reduce the damages that may result from an ice jam event. This paper presents a brief overview of measures to mitigate the damaging effects of ice jams and contains a discussion on their application to Canadian rivers. Key words: controlled ice breakup, flood control, ice jams, ice management, river ice.


2003 ◽  
Vol 30 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Spyros Beltaos ◽  
Sayed Ismail ◽  
Brian C Burrell

Changing climates will likely result in more frequent midwinter ice jams along many Canadian rivers, thereby increasing the likelihood of flood damage and environmental changes. Therefore, the possibility of more frequent ice jams has to be considered during the planning of flood damage reduction measures, the design of waterway structures, and the enactment of measures to protect the environment. As a case study of midwinter jamming, four winter breakup and jamming events that occurred along an upper stretch of the Saint John River during the 1990s are described and the implications of similar midwinter jamming are discussed.Key words: breakup, river ice, climate change, ice jamming, ice thickness, winter, winter thaw.


2005 ◽  
Vol 36 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Jueyi Sui ◽  
Bryan W. Karney ◽  
Daxian Fang

This paper presents the impacts of frazil ice jams on the variation in water level at the Hequ Reach of the Yellow River in China. Based on both field observations and experimental studies, it is found that both the evolution of frazil ice jams and the associated variation in water level depend upon an interesting interaction between hydraulic variables during the ice-jammed period. In particular, the critical Froude number governing the formation of river ice jams and their upstream propagation is about 0.09. The water level during ice-jammed periods depends not only on the slope of the water surface and the water level under open-water conditions with the same discharge, but also on the length of the ice jam and the ice concentration in the water. Moreover, the field investigations show that the thickness of river ice strongly influences the variation in water level during ice-jammed periods. Empirical relationships are derived to quantify the relationship between the highest water level during ice periods and related physical parameters. To confirm the field results, and to explore the influence of ice discharge on the variation in water level, experimental studies were also conducted. These results confirm that the ice concentration plays a key role in the variation in water level and the jam thickness. Given the complexity of the jamming processes, surprisingly good agreement is observed between field and experimental investigations.


2018 ◽  
Vol 31 (3) ◽  
pp. 504-511 ◽  
Author(s):  
Lin Fan ◽  
Ze-yu Mao ◽  
Hung Tao Shen

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1241 ◽  
Author(s):  
Tomasz Kolerski

The prediction of winter flooding is a complicated task since it is affected by many meteorological and hydraulic factors. Typically, information on river ice conditions is based on historical observations, which are usually incomplete. Recently, data have been supplemented by information extracted from satellite images. All the above mentioned factors provide a good background of the characteristics of ice processes, but are not sufficient for a detailed analysis of river ice, which is highly dynamic and has a local extent. The main aim of this paper is to show the possibility of the prediction of ice jams in a river using a mathematical model. The case of the Odra River was used here. Within the Lower and Middle Odra River, the most significant flood risk, in winter conditions, is posed by ice jams created when movable ice is stopped by existing obstacles such as shallow areas in the riverbed, the narrowing of the riverbed, and other obstacles caused as a result of sudden changes of the river current, backwater from sea waters, and north winds, which contribute to the creation of ice jams. This in turn causes the damming of water and flooding of adjacent areas. The DynaRICE model was implemented at two locations along the Odra River, previously selected as ice-prone areas. Also, a thermal simulation of ice cover formation on Lake Dąbie was shown with variable discharge. The results of numerical simulations showed a high risk of ice jamming on the Odra River, created within one day of ice moving downstream. The prediction of the place and timing, as well as the extent, of the ice jam is impossible without the application of a robust mathematical model.


1978 ◽  
Vol 14 (4) ◽  
pp. 693-695 ◽  
Author(s):  
Darryl J. Calkins

2021 ◽  
Author(s):  
Apurba Das ◽  
Karl-Erich Lindenschmidt

River ice is an important hydraulic and hydrological component of many rivers in the high northern latitudes of the world. It controls the hydraulic characteristics of streamflow, affects the geomorphology of channels, and can cause flooding due to ice-jam formation during ice-cover freeze-up and breakup periods. In recent decades, climate change has considerably altered ice regimes, affecting the severity of ice-jam flooding. Although many approaches have been developed to model river ice regimes and the severity of ice jam flooding, appropriate methods that account for impacts of the future climate on ice-jam flooding have not been well established. Therefore, the main goals of this study are to review the current knowledge of climate change impacts on river ice processes and to assess the current modelling capabilities to determine the severity of ice jams under future climatic conditions. Finally, a conceptual river ice-jam modelling approach is presented for incorporating climate change impacts on ice jams.


1991 ◽  
Vol 18 (6) ◽  
pp. 933-939 ◽  
Author(s):  
Darryl J. Calkins

Ice control structures placed in the streamwise direction of a river were analyzed to determine the effectiveness in reducing ice jam thicknesses. The theory describing the thickness for “wide” river ice jams was modified to analyze these longitudinal types, providing the computational verification that ice jam thicknesses could be reduced where the mode of ice cover thickening is internal collapse. These longitudinal structures appear to provide a new tool for modifying the river ice regime at freeze-up and possibly at breakup. By decreasing the ice jam thicknesses, which leads to lower stages, the structures have the potential for decreasing ice jam flood levels. The structures' ability to function is independent of the flow velocity and these structures should perform in rivers with velocities greater than the usual limitation of roughly 1 m/s associated with conventional cross-channel ice booms. Other possible applications include controlling ice movement at outlets from lakes, enhancing river ice cover progression, or even restraining the ice cover at breakup. A U.S. patent application has been filed jointly by the author and the U.S. Army Corps of Engineers. Key words: river ice, ice jams, ice control, hydraulic structures, ice booms.


Sign in / Sign up

Export Citation Format

Share Document