Mechanism analysis of powdered activated carbon controlling microfiltration membrane fouling in surface water treatment

Author(s):  
Junxia Liu ◽  
Jing Tian ◽  
Zhihong Wang ◽  
Dongsheng Zhao ◽  
Fan Jia ◽  
...  
Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 149 ◽  
Author(s):  
Bin Huang ◽  
Hangkun Gu ◽  
Kang Xiao ◽  
Fangshu Qu ◽  
Huarong Yu ◽  
...  

Membrane fouling is still the bottleneck affecting the technical and economic performance of the ultrafiltration (UF) process for the surface water treatment. It is very important to accurately understand fouling mechanisms to effectively prevent and control UF fouling. The rejection performance and fouling mechanisms of the UF membrane for raw and coagulated surface water treatment were investigated under the cycle operation of constant-pressure dead-end filtration and backwash. There was no significant difference in the UF permeate quality of raw and coagulated surface water. Coagulation mainly removed substances causing turbidity in raw surface water (including most suspended particles and a few organic colloids) and thus mitigated UF fouling effectively. Backwash showed limited fouling removal. For the UF process of both raw and coagulated surface water, the fittings using single models showed good linearity for multiple models mainly due to statistical illusions, while the fittings using combined models showed that only the combined complete blocking and cake layer model fitted well. The quantitative calculations showed that complete blocking was the main reason causing flux decline. Membrane fouling mechanism analysis based on combined models could provide theoretical supports to prevent and control UF fouling for surface water treatment.


2017 ◽  
Vol 18 (3) ◽  
pp. 950-955
Author(s):  
Bo Gui ◽  
Qingqing Zhao ◽  
Junxia Liu ◽  
Zhihong Wang ◽  
Huaqiang Chu ◽  
...  

Abstract This study was to assess the effect of powdered activated carbon (PAC) pre-adsorption time on ultrafiltration performance for surface water treatment. Experimental results demonstrated that membrane fouling could be mitigated by extending the pre-adsorption time. The molecular weight (MW) distribution of water samples was determined by liquid chromatography – organic carbon detector (LC-OCD) and results showed that the mechanism of PAC controlling fouling was attributed to a decrease in the low molecular weight (LMW) fraction of raw water via extending the pre-adsorption time. Fouling indexes (FIs) were used to evaluate membrane fouling potential and the results showed that polysaccharides (PS) and proteins (PN) were greatly responsible for membrane fouling. Therefore, prolonging the PAC pre-adsorption time and decreasing the PS and PN content in raw water are the main measurement for the alleviation of membrane fouling when PAC is used as the pretreatment in waterworks.


2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


2017 ◽  
Vol 78 ◽  
pp. 12-18
Author(s):  
Tomoichi Wataba ◽  
Tomoki Takahashi ◽  
Kazufumi Matsuyama ◽  
Hideto Matsuyama

Sign in / Sign up

Export Citation Format

Share Document